Способ роста клеточной стенки

Функции, строение, химический состав и рост клеточной стенки.

Клеточная оболочка — типичный компонент растительной клетки, является продуктом жизнедеятельности протопласта.

Функции:

1. Прочные и жесткие клеточные оболочки, служат механической опорой для органов растения.

2. Оболочка ограничивает растяжение протопласта вакуолью, а размер и форма зрелой клетки перестают изменяться.

3. В наружных тканях клеточные оболочки, защищают лежащие глубже клетки от высыхания.

4. По клеточным стенкам, примыкающим к друг другу, могут передвигаться различные вещества и вода от клетки к клетке (путь через апопласт).

5. Они оказывают влияние на поглощение, транспирацию и секрецию.

Клеточные стенки, как правило, бесцветны и легко пропускают солнечный свет. Стенки соседних клеток скреплены пектиновой срединной пластинкой. Срединная пластинка — единый слой, общий для двух соседних клеток. Она представляет собой несколько видоизмененную клеточную пластинку, возникшую в процессе цитокинеза. Срединная пластинка менее обводнена, в ней могут присутствовать молекулы лигнина. Углы клеточных стенок в результате внутриклеточного давления могут округляться, и между соседними клетками образуются межклетники. Все стенки клеток растения, связанные одна с другой и примыкающие к заполненным водой межклетникам, обеспечивают существование сплошной обводненной среды, в которой свободно передвигаются водорастворимые вещества.

Строение и химический состав.

Первичная клеточная стенка.

Первоначально кнаружи от плазмалеммы возникает первичная клеточная стенка.

Состав: целлюлоза, гемицеллюлоза, пектин и вода.

Первичные клеточные стенки соседних клеток соединены протопектиновой срединной пластинкой. В клеточной стенке линейные очень длинные (несколько микрон) молекулы целлюлозы, состоящие из глюкозы, собраны в пучки — мицеллы, которые, в свою очередь, объединяются в микрофибриллы – тончайшие (1,5…4 нм) волоконца неопределенной длины, а затем в макрофибриллы. Целлюлоза образует многомерный каркас, который погружен в аморфный сильно обводненный матрикс из нецеллюлозных углеводов: пектинов, гемицеллюлоз и др. Именно целлюлоза обеспечивает прочность клеточной стенки. Микрофибриллы эластичны и по прочности на разрыв сходны со сталью. Полисахариды матрикса определяют такие свойства стенки, как высокая проницаемость для воды, растворенных мелких молекул и ионов, сильная набухаемость. Благодаря матриксу по стенкам, примыкающим к друг другу, могут передвигаться вода и вещества от клетки к клетке (путь через апопласт по «свободному пространству»). Некоторые гемицеллюлозы могут откладываться в стенках клеток семян в качестве запасных веществ.

Рост стенки.

При делении клеток создается заново лишь клеточная пластинка. На нее обе дочерние клетки откладывают собственные стенки, состоящие главным образом из гемицеллюлозы. При этом образование стенки происходит и на внутренней поверхности остальных стенок, принадлежащих материнской клетке. Клеточная пластинка преобразуется в срединную, она обычно тонка и почти неразличима. После деления клетка вступает в фазу растяжения за счет поглощения клеткой воды и роста центральной вакуоли. Тургорное давление растягивает стенку, в которую внедряются мицеллы целлюлозы и вещества матрикса. Такой способ роста носит название интуссусцепции, внедрения. Оболочки делящихся и растущих клеток называют первичными. Они содержат воды до 90 %, в сухом веществе преобладают полисахариды матрикса: у двудольных пектины и гемицеллюлозы в равном соотношении, у однодольных – в основном гемицеллюлозы; содержание целлюлозы не превышает 30 %. Толщина первичной стенки не более 0,1…0,5 мкм.

К моменту, когда рост клетки заканчивается, рост клеточной стенки может продолжаться, но уже в толщину. Этот процесс носит название вторичного утолщения. При этом на внутренней поверхности первичной клеточной стенки откладывается вторичная клеточная стенка. Рост вторичной клеточной стенки происходит в результате аппозиции, наложения новых мицелл целлюлозы на внутреннюю поверхность клеточной стенки. Таким образом, наиболее молодые слои клеточной стенки ближе всего к плазмаллеме.

Для некоторых типов клеток (многие волокна, трахеиды, членики сосудов) образование вторичной стенки – основная функция протопласта, после завершения вторичного утолщения он отмирает. Однако это не обязательно. Вторичная стенка выполняет главным образом механические, опорные функции. В ее составе значительно меньше воды и преобладают микрофибриллы целлюлозы (40…50 % сухого вещества). Во вторичных стенках волокон льна и волосков хлопчатника содержание целлюлозы может достигать 95 %.

Читайте также:  Грибы вешенка способы засолки

Механизм построения клеточной стенки. Клеточная стенка образуется в результате деятельности протопласта. В соответствии с этим вещества поступают в стенку изнутри, со стороны протопласта. Строительные материалы – молекулы целлюлозы пектина, лигнина и других веществ — накапливаются и частично синтезируются в цистернах аппарата Гольджи. Упакованные в пузырьки аппарата Гольджи, они транспортируются к плазмалемме. Разорвав ее, пузырек лопается, и содержимое его оказывается снаружи плазмалеммы. Мембрана пузырька восстанавливает целостность плазмалеммы. Благодаря ферментной активности плазмалеммы идет сборка фибрилл целлюлозы строение клеточной стенки. Образуемые плазмалеммой фибриллы накладываются изнутри, не переплетаясь. В их ориентации большая роль принадлежит микротрубочкам, располагающимся под плазмалеммой параллельно формирующимся фибриллам.

2. Поры. Видоизменения клеточной стенки.

Поры. При образовании первичной клеточной стенки в ней выделяются более тонкие участки, где фибриллы целлюлозы лежат более рыхло. Канальцы эндоплазматической цепи проходят здесь через клеточные стенки, соединяя соседние клетки. Эти участки называются первичными поровыми полями, а канальцы эндоплазматической сети, проходящие в них, — плазмодесмами.

Рост в толщину происходит у клеточной стенки неравномерно, неутолщенными остаются небольшие участки первичной клеточной стенки в местах расположения первичных поровых полей (поровых каналов). Поровые каналы двух соседних клеток располагаются обычно друг против друга и разделяются замыкающей пленкой поры — двумя первичными клеточными стенками с межклеточным веществом между ними. В пленке сохраняются субмикроскопические отверстия, через которые проходят плазмодесмы. Таким образом, пора — это два поровых канала и замыкающая пленка между ними.

Плазмодесмы пронизывают замыкающие пленки пор. В каждой клетке имеется от нескольких сотен до десятков тысяч плазмодесм. Плазмодесмы встречаются только — в растительных клетках, там, где имеются твердые клеточные стенки. Плазмодесмы образуются из канальцев ЭР, которые остаются в клеточной пластинке между двумя дочерними клетками. При воссоздании ЭР обеих клеток они оказываются соединенными через плазмодесмы.

Плазмодесма проходит через плазмодесменный канал в замыкающей пленке поры. Плазмалемма, выстилающая канал, и гиалоплазма между ней и плазмодесмой непрерывны с плазмалеммами и гиалоплазмами смежных клеток. Таким образом, протопласты соседних клеток связаны между собой каналами плазмодесм и плазмодесмами. По ним происходит межклеточный транспорт ионов и молекул, а также гормонов. Объединенные плазмодесмами протопласты клеток в растении образуют единое целое — симпласт. Транспорт веществ через плазмодесмы получил название симпластического в отличие от апопластического транспорта по клеточным стенкам и межклетникам.

В процессе жизнедеятельности клетки целлюлозная клеточная стенка может претерпевать видоизменения.

Дата добавления: 2016-10-17 ; просмотров: 7386 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Клеточная оболочка, ее образование и рост

Клетки растений окружены плотной полисахаридной оболочкой, выстланной изнутри плазмалеммой.

Образование клеточной стенки происходит в метафазе и телофазе клеточного деления. В экваториальной зоне деления возникает срединная пластинка, состоящая из пектата кальция, которая, нарастая от цент­ра к периферии, отделяет одну новообразованную клетку от дру­гой. Срединная пластинка с той и другой стороны покрывается первичной клеточной стенкой. Рост в толщину происходит за счет наложения новых слоев со стороны содержимого каждой клетки. Рост клетки в длину начинается с разрыхления матрикса. В этом процессе важную роль играют фитогормоны. В образовавшиеся полости поступают новые порции материала, из которого строится клеточная стенка. Синтез и транспорт этих веществ осуществляются главным образом вакуолями аппарата Гольджи.

Клеточную стенку делящихся и растущих растяжением клеток называют первичной. После прекращения роста клетки на первичную клеточную стенку изнутри откладываются новые слои и возникает прочная вторичная клеточная стенка.

В состав клеточной стенки входят структурные компоненты (целлюлоза у растений, хитин у грибов), компоненты матрикса стенки (гемицеллюлозы, пектин, белки), инкрустирующие компо­ненты (лигнин, суберин) и вещества, откладывающиеся на поверхности стенки (кутин и воска). Клеточные стенки могут содержать также силикаты и карбонаты кальция.

Читайте также:  Получение золота цианидным способом

Целлюлоза (полимер b-D-глюкозы), гемицеллюлозы (полимеры гексоз и пентоз) и пектиновые вещества (производные уроновых кислот) являются углеводными компонентами клеточных стенок. Целлюлоза и пектиновые вещества адсорбируют воду, обеспечивая оводненность клеточной стенки. Пектиновые вещества, содержащие много карбоксильных групп, связывают ионы двухвалентных металлов, которые способны обмениваться на другие катионы (Н + , К + и т.д.). Это обусловливает катионообменную способность клеточных стенок растений. Помимо углеводных компонентов в состав матрикса клеточной стенки входит также структурный белок, называемый экстенсином. Это гликопротеин, содержащий более 20% L-оксипролина от суммы аминокислот. По этому признаку белок клеточных стенок растений сходен с меж­клеточным белком животных — коллагеном.

Целлюлоза: А – структура молекулы целлюлозы; Б – ассоциации молекулы целлюлозы: 1 – мицелла, 2 – микрофибрилла, 3 – макрофибрилла

Основным инкрустирующим веществом клеточной стенки является лигнин. Интенсивная лигнификация клеточных стенок начинается после прекращения роста клетки. Лигнин пред­ставляет собой полимер с неразветвленной молекулой, состоя­щей из ароматических спиртов (п-кумарового, кониферилового, синапового). Разрушение и конденсация лигнина в почве — один из факторов образования гумуса. Интенсивная лигнификация (пропитка слоев целлюлозы лигнином) клеточных оболочек начинается после прекращения роста клетки. Лигнин может откладываться отдельными участками — в виде колец, спиралей или сетки, как это наблюдается в оболочках клеток проводящей ткани — ксилемы, или сплошным слоем, за исключением тех мест, где осуществляются контакты между соседними клетками в виде плазмодесм. Лигнин скрепляет целлюлозные волокна и действует как очень твердый и жесткий каркас, усиливающий прочность клеточных стенок на растяжение и сжатие. Он же обеспечивает клеткам дополнительную защиту от физических и химических воздействий, снижает водопроницаемость. Содержание лигнина в оболочке достигает 30%. Инкрустация им клеточных оболочек приводит к их одревеснению, которое часто влечет за собой отмирание живого содержимого клетки. Лигнин в сочетании с целлюлозой придает особые свойства древесине, которые делают ее незаменимым строительным материалом.

В регуляции водного и теплового режима растений участвуют ткани, стенки клеток которых пропитаны суберином. Отложение суберина делает стенки трудно проницаемы­ми для воды и растворов (например, в эндодерме, перидерме). Суберин откладывается на оболочку изнутри и делает ее практически непроницаемой для воды и растворов. В результате протопласт клетки отмирает и клетка заполняется воздухом. Такой процесс называется опробковением. Наблюдается опробковение оболочки клеток в покровных тканях многолетних древесных растений — перидерме, корке, а также в эндодерме корня. Суберин — основное вещество пробковых образований, которому эти образования главным образом обязаны своими свойствами: непроницаемостью для воды, для газов и малой теплопроводностью..

Поверхность эпидермальных клеток растений защищена гидрофобными веществами — кутином и восками: Предшествен­ники этих соединений секретируются из цитоплазмы на по­верхность, где и происходит их полимеризация. Слой кутина обычно пронизан полисахаридными компонентами стенки (целлюлозой, пектином) и образует кутикулу. Кутикула участвует в регуляции водного режима тканей и защищает клетки от повреждений и проникновения инфекции.

В оболочках эпидермальных клеток некоторых растений (злаков, осок и др.) накапливается большое количество минеральных веществ (минерализация), в первую очередь карбоната кальция и кремнезема. При минерализации листья и стебли растений становятся жесткими, твердыми и в меньшей степени поедаются животными.

В первичных клеточных стенках на долю целлюлозы приходится до 30% сухой массы стенки. Количество гемицеллюлоз и пектиновых веществ меняется в зависимости от объекта. Вместе с белками пектиновые вещества могут составлять около 30% сухой массы клетки, причем количество белка достигает 5 — 10%. Около 40% приходится на долю гемицеллюлоз.

Источник

Способ роста клеточной стенки

• Белки снижают жесткость клеточной стенки , что обеспечивает рост клетки

• Ориентация микрофибрилл целлюлозы от слоя к слою меняется

Для роста растительной клетки необходимо, чтобы полимерные конструкции ее стенки либо смещались относительно друг друга, либо разрушались. Хотя целлюлозные микрофибриллы клеточной стенки противостоят растягивающим усилиям, связи, которые в слое держат соседние микрофибриллы вместе, могут в определенных пределах ослабляться, так что клетка способна расширяться в перпендикулярном к ним направлении. По-видимому, два белка являются основными кандидатами на роль агентов, вызывающих растяжение клеточной стенки.

Читайте также:  Изменение физической величины несущее информацию кодированную определенным способом это

Было показано, что белок экспансии вызывает растяжение целлюлозного листа (листа бумаги), когда он помещается под нагрузку. Предполагают, что эффект экспансина носит неферментативный характер, и он разрывает водородные связи, которые скрепляют плотно упакованные целлюлозные микрофибриллы, из которых состоит лист. Однако в состав клеточной стенки входит не только целлюлоза; целлюлозные конструкции окружены такими материалами, как пектин и сшивающие гликаны, которые находятся между микрофибриллами. Считается, что в гетерогенном окружении стенки растительной клетки активный экспансии как бы «расшивает» водородные связи между гликанами и целлюлозными микрофибриллами, позволяя им сдвигаться, как представлено на рисунке ниже.

Этому способствует высвобождение клетками растений протонов (ионов Н+), поскольку экспансии лучше функционирует в кислой среде. Поэтому степень высвобождения протонов можно использовать для того, чтобы контролировать растягивание клеток. Согласно представлениям, объясняющим эффект кислого роста, гормон роста растений, ауксин, именно таким образом стимулирует расширение клеток.

Определенную роль в расслаблении клеточной стенки, необходимом для роста, играет еще один находящийся в ней белок. Это фермент ксилогликан эндотрансглико-зилаза, который обладает функцией «вырезки и вставки». Фермент работает, разрывая гликановые сшивки и воссоединяя разрезанные концы с концами других гликановых цепей, тем самым ослабляя матрикс клеточной стенки и обеспечивая расширение клетки. Вероятно, фермент функционирует вместе с экспансинами.

Что происходит с целлюлозными слоями по мере роста клеток? Так же как у «русской матрешки», самая молодая ламелла находится внутри, ближе всего к плазматической мембране, а более зрелые оболочки ее окружают. Однако, в отличие от этой куклы, клеточная оболочка продолжает расти. Первые слои располагаются вокруг клетки, когда она еще мала, а последние размещаются после того, как ее размеры в несколько раз увеличились По мере продолжения расширения клетки, в структуре целлюлозных микрофибрилл старых слоев происходят изменения. Эти изменения можно описать в рамках старой идеи, которая носит название гипотезы мультисеточного роста.

Она заключается в том, что микрофибриллы вначале формируются вокруг клетки, перпендикулярно направлению ее расширения (или в виде «плоской спирали», наподобие сжатой матрасной пружины). Затем по мере того, как в соответствии с увеличением размера клетки, новые слои целлюлозных микрофибрилл занимают свое место ближе к плазматической мембране, старые слои перестраиваются под действием сил роста. Этот процесс очень напоминает растягивание пружины, как показано на рисунке ниже.

В соответствии с этой моделью, существует градиент расположения целлюлозных микрофибрилл. Ближайшие к мембране фибриллы располагаются перпендикулярно к направлению расширения клетки, в то время как микрофибриллы отдаленных слоев стремятся ориентироваться параллельно направлению роста, а находящиеся между ними занимают промежуточное наклонное положение.

Однако в действительности рост клеточной стенки является более сложным процессом, чем постулирует предложенная модель. Новообразующиеся микрофибриллы не всегда закладываются на мембране перпендикулярно к направлению расширения клетки. Они могут образовывать слои с меняющейся ориентацией, которые располагаются крест-накрест, что непросто объяснить, исходя из представлений гипотезы мультиклеточного роста. Изменения расположения микротрубочек и целлюлозных микрофибрилл могут быть вызваны гормонами роста растений. Это свидетельствует о том, что изменение расположения микрофибрилл контролируется самой клеткой, а не является просто следствием ее расширения.

Более важную роль в процессе расширения клеточной стенки, вероятно, играет разрыв связей между целлюлозными микрофибриллами, а не изменение расположения их старых слоев.

Связи, образующиеся между микрофибриллами клеточной стенки, предотвращают их расхождение и расширение клетки.
Секретируемые белки разрывают связи между микрофибриллами и дают возможность клетке расшириться.
Гипотеза мультисеточного роста предполагает,
что по мере растяжения клетки старые микрофибриллы изменяют ориентацию по отношению к оси направления расширения.
Эта ориентация аналогична изменению угла витков пружины, когда концы ее растягиваются.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Оцените статью
Разные способы