- Способ решения тригонометрического уравнения
- Методы решения тригонометрических уравнений.
- 1. Алгебраический метод.
- 2. Разложение на множители.
- 3. Приведение к однородному уравнению.
- 4. Переход к половинному углу.
- 5. Введение вспомогательного угла.
- 6. Преобразование произведения в сумму.
- Решение тригонометрических уравнений — 39 примеров!
- Тригонометрические уравнения — коротко о главном
- Простейшие тригонометрические уравнения
- Как часто тригонометрические уравнения встречаются на ЕГЭ?
- Два способа решения тригонометрических уравнений – через формулы и по кругу
- Алгоритм вычисления арксинусов и других «арок»
- Если «арка» берется от отрицательного числа?
- Решение 11-ти простейших тригонометрических уравнений
Способ решения тригонометрического уравнения
Методы решения тригонометрических уравнений.
1. Алгебраический метод.
( метод замены переменной и подстановки ).
2. Разложение на множители.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево:
sin x + cos x – 1 = 0 ,
преобразуем и разложим на множители выражение в
левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 ,
П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.
Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,
2 cos 4x cos 2x = 2 cos ² 4x ,
cos 4x · ( cos 2x – cos 4x ) = 0 ,
cos 4x · 2 sin 3x · sin x = 0 ,
1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,
3. Приведение к однородному уравнению.
а) перенести все его члены в левую часть;
б) вынести все общие множители за скобки;
в) приравнять все множители и скобки нулю;
г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на
cos ( или sin ) в старшей степени;
д) решить полученное алгебраическое уравнение относительно tan .
П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.
Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,
sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,
tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,
корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда
1) tan x = –1, 2) tan x = –3,
4. Переход к половинному углу.
П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.
Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =
= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,
2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,
tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,
5. Введение вспомогательного угла.
где a , b , c – коэффициенты; x – неизвестное.
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin
( здесь
— так называемый вспомогательный угол ), и наше уравнение прини мает вид:
6. Преобразование произведения в сумму.
П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .
Р е ш е н и е . Преобразуем левую часть в сумму:
Источник
Решение тригонометрических уравнений — 39 примеров!
Привет, самый лучший ученик во Вселенной!
Сегодня мы с тобой изучим, как решать одну из разновидностей уравнений – тригонометрические. Мы решим 39(!) примеров, от самых простых, до самых сложных.
И станем на шаг ближе к заветной цели – сдать ЕГЭ по математике так, чтобы поступить в ВУЗ мечты!
Тригонометрические уравнения — коротко о главном
Тригонометрическое уравнение – это уравнение, в котором неизвестная находится строго под знаком тригонометрической функции.
Существует два способа решения тригонометрических уравнений:
Первый способ – с использованием формул.
Второй способ – через тригонометрическую окружность.
Тригонометрическая окружность позволяет измерять углы, находить их синусы, косинусы и прочее.
Чтобы уметь решать тригонометрические уравнения необходимо знать как минимум следующее:
- что такое синус, косинус, тангенс, котангенс;
- какие знаки принимает та или иная тригонометрическая функция в разных четвертях тригонометрической окружности;
- какие из этих функций нечётные, а какие – чётные;
- знание значений тригонометрических функций в основных углах 1 четверти.
Если ты что-то не знаешь, повтори следующие разделы:
Этого будет вполне достаточно. Если это по ходу моего повествования окажется не так, то не сердись, придётся вспомнить что-нибудь ещё, не упомянутое здесь.
Простейшие тригонометрические уравнения
Что же это такое, как ты думаешь? Является ли, например, уравнение
Ты и сам прекрасно понимаешь, что нет! Потому что ни одной тригонометрической функции \( \displaystyle \left( sin x,cos x,tg x,ctg x \right)\) в нём и в помине нет!
А что насчёт вот такого уравнения?
И опять ответ отрицательный!
Это так называемое уравнение смешанного типа.
Оно содержит как тригонометрическую составляющую, так и линейную (\( \displaystyle 3x\)).
Некоторые типы подобных уравнений мы будем с тобой решать в следующих раздела этой статьи.
Но вернёмся к вопросу: «Что же такое тригонометрические уравнения?»
Тригонометрические уравнения –это уравнения, в которых неизвестная находится строго под знаком тригонометрической функции!
- \( \displaystyle 6co<
^<2>>x+5sin-7=0\) - \( \displaystyle sin\pi \sqrt
=-1\) - \( \displaystyle \frac<3><5>sinx+\frac<4><5>cosx=1\) и т.д.
Однако для начала мы не будем решать сложные и иногда неприступные тригонометрические уравнения, а ограничимся самыми простыми уравнениями вида:
- \( \displaystyle sinf\left( x \right)=a\)
- \( \displaystyle cosf\left( x \right)=a\)
- \( \displaystyle tgf\left( x \right)=a\)
- \( \displaystyle ctgf\left( x \right)=a\)
Где \( \displaystyle a\) – некоторое постоянное число.
Например: \( \displaystyle 0,5;
\( \displaystyle f\left( x \right)\) – некоторая функция, зависящая от искомой переменной \( \displaystyle x\), например \( \displaystyle f\left( x \right)=x,
f\left( x \right)=2-x,
f\left( x \right)=\frac<\pi x><7>\) и т. д.
Такие уравнения называются простейшими!
Основная цель решения ЛЮБОГО тригонометрического уравнения – это свести его к виду простейшего!
Для этого, как правило, используют аппарат, который я описал в разделе «Формулы тригонометрии«
Так что очень важно, я бы даже сказал, жизненно необходимо научиться решать простейшие уравнения, ибо они – фундамент для решения сложных примеров.
Как часто тригонометрические уравнения встречаются на ЕГЭ?
Тригонометрические уравнения могут встретиться до четырех раз в заданиях ЕГЭ. Это может быть:
- Задача №5 (простейшее тригонометрическое уравнение – встречается время от времени);
- Задача №10 (задача с прикладным содержанием, которая включает в себя решение тригонометрического уравнения – встречается изредка);
- Задача №12 (она на производную, но в конечном счёте сводится к решению простейшего тригонометрического уравнения – ЧАСТО ВСТРЕЧАЕТСЯ В ЕГЭ)
- Задача №13 – даёт 2 первичных балла – (решение тригонометрического уравнения средней или высокой сложности – ОЧЕНЬ ЧАСТО, ПРАКТИЧЕСКИ ВСЕГДА!)
Так что, как ты понимаешь, при некоторых раскладах, навык решения данного вида уравнений может добавить в твою копилку аж 5 первичных баллов из 32!
Два способа решения тригонометрических уравнений – через формулы и по кругу
В принципе, я не могу сказать, что легче: держать в голове, как строится круг, или помнить 4 формулы.
Тут решать тебе самому, однако я всё же предпочитаю решать данные уравнения через формулы, поэтому здесь я буду описывать именно этот метод.
Вначале мы начнём с «самых простейших» из простейших уравнений вида:
Я хочу сразу оговориться вот о чем, будь внимателен:
Уравнения вида: \( \displaystyle sinf\left( x \right)=a\), \( \displaystyle cosf\left( x \right)=a\) имеют смысл только тогда, когда \( \displaystyle -1\le \text\le 1\)
То есть, тебе не надо знать вообще никаких формул, чтобы спокойно ответить, что уравнения, например:
\( \displaystyle cos\left( 3
\( \displaystyle sin\left( 2<
Корней не имеют.
Потому что они «не попадают» в промежуток от минус единицы до плюс единицы.
Ещё раз скажу: внимательно обдумай эти слова, они уберегут тебя от многих глупых ошибок.
Для остальных же случаев тригонометрические формулы такие как в этой таблице.
\( \displaystyle A\) | \( \displaystyle a\) | \( \displaystyle -1\) | \( \displaystyle 0\) | \( \displaystyle 1\) |
---|---|---|---|---|
\( \displaystyle \sin x=A\) | \( \displaystyle <<\left( -1 \right)>^ | \( \displaystyle -\frac<\pi ><2>+2\pi n\) | \( \displaystyle \pi n\) | \( \displaystyle \frac<\pi ><2>+2\pi n\) |
\( \displaystyle \cos x=A\) | \( \displaystyle \pm \arccos \alpha +2\pi n\) | \( \displaystyle \pi +2\pi n\) | \( \displaystyle \frac<\pi ><2>+\pi n\) | \( \displaystyle 2\pi n\) |
\( \displaystyle tgx=A\) | \( \displaystyle arctg\alpha +\pi n\) | \( \displaystyle -\frac<\pi ><4>+\pi n\) | \( \displaystyle \pi n\) | \( \displaystyle \frac<\pi ><4>+\pi n\) |
\( \displaystyle ctgx=A\) | \( \displaystyle arcctg\alpha +\pi n\) | \( \displaystyle \frac<3\pi ><4>+\pi n\) | \( \displaystyle \frac<\pi ><2>+\pi n\) | \( \displaystyle \frac<\pi ><4>+\pi n\) |
На самом деле в этой таблице данных немного больше, чем нужно.
Тебе нужно лишь запомнить первые два её столбца, другие столбцы – частные случаи решения тригонометрических уравнений.
Я, допустим, никогда не утруждаю себя их запоминанием, а вывожу ответ из основных формул.
Глядя на таблицу, не возникло ли у тебя пары вопросов?
У меня бы возникли вот какие:
Что такое \( \displaystyle n\) и что такое, например \( \displaystyle arcsin\alpha
Отвечаю на все по порядку:
\( \displaystyle n\) – это любое целое число \( \displaystyle \left( 0,\text< >1,\text< >-1,\text< >2,\text< >-2,\text< >\ldots .\text < >\right)\).
В чем уникальная особенность тригонометрических уравнений перед всеми остальными, которые ты изучал?
ОНИ ИМЕЮТ БЕСКОНЕЧНОЕ КОЛИЧЕСТВО КОРНЕЙ.
И число \( \displaystyle n\) и служит для обозначения этой «бесконечности».
Конечно, вместо \( \displaystyle n\) можно писать любую другую букву, только не забывай добавить в ответе: \( \displaystyle n\in Z\) – что означает, что \( \displaystyle n\) – есть любое целое число.
Теперь насчёт арксинуса и других «арок». Вообще, так записываются обратные тригонометрические функции и понимать, скажем, \( \displaystyle arcsin\alpha \) надо как «угол, синус которого равен \( \displaystyle \alpha \)«
- \( \displaystyle arcsin\alpha\)– угол, синус которого равен \( \displaystyle \alpha\)
- \( \displaystyle arccos\alpha\)– угол, косинус которого равен \( \displaystyle \alpha\)
- \( \displaystyle \alpha\)\( \displaystyle arctg\alpha\)– угол, тангенс которого равен \( \displaystyle \alpha\)
- \( \displaystyle \alpha\)\( \displaystyle arcctg\alpha\) – угол, котангенс которого равен \( \displaystyle \alpha\)
- \( \displaystyle \arcsin \left( 0 \right)=0,\)
- \( \displaystyle \arccos \left( \frac<\sqrt<2>><2>\right)=\frac<\pi ><4>,\)
- \( \displaystyle \ arctg\left( 1 \right)=\frac<\pi ><4>,\)
- \( \displaystyle \arcsin \left( 0,5 \right)=\frac<\pi ><6>,\)
- \( \displaystyle \arccos \left( \frac<\sqrt<3>><2>\right)=\frac<\pi ><6>,\)
- \( \displaystyle \ arctg\left( \sqrt <3>\right)=\frac<\pi ><3>\)
Алгоритм вычисления арксинусов и других «арок»
- Смотрим на то, что стоит под «аркой» – какое там число
- Смотрим, какая у нас «арка» – для синуса ли, или для косинуса, тангенса или котангенса
- Смотрим, чему равен угол (1 четверти), для которого синус, косинус, тангенс, котангенс равен числу, стоящему под аркой
- Записываем ответ
Вот простой пример вычисления аркосинуса:
\( \displaystyle \arccos \left( \frac<\sqrt<3>> <2>\right)\)
- Под аркой число \( \displaystyle \frac<\sqrt<3>><2>\)
- Арка для функции – косинус!
- Косинус какого угла равен \( \displaystyle \frac<\sqrt<3>><2>\)? Угла \( \displaystyle \frac<\pi ><6>\) (или \( \displaystyle 30\) градусов!)
- Тогда \( \displaystyle \arccos \left( \frac<\sqrt<3>><2>\right)=\frac<\pi ><6>\)
\( \displaystyle \frac<\pi ><6>\) и \( \displaystyle \frac<\pi ><3>\).
Если «арка» берется от отрицательного числа?
Всё ли я сказал про «арки»? Почти что да! Остался вот какой момент.
Что делать, если «арка» берётся от отрицательного числа?
Лезть в таблицу – как бы не так! Для арок выполняются следующие формулы:
- \( \displaystyle \text
\left( -\alpha \right)=-\text \alpha \) - \( \displaystyle \text
\left( -\alpha \right)=-\text \alpha \)
И внимание.
Чтобы запомнить, ориентируемся на обычные тригонометрические функции: грубо говоря, синус и тангенс мы смотрим на тригонометрической окружности по вертикальной оси, а косинус и котангенс – по горизонтальной.
Соответственно, для арксинуса и арктангенса выбираем две четверти по вертикали: первую и четвёртую (минусик выносится из аргумента и ставится перед функцией), а для арккосинуса и арккотангенса – по горизонтали: первую и вторую.
В первой и второй четвертях аргумент уже не может быть отрицательным, поэтому и получаются формулы не совсем похожими.
Ну всё, теперь мы можем приступать к решению простейших уравнений!
Решение 11-ти простейших тригонометрических уравнений
Уравнение 1. \( \displaystyle sin\left( x \right)=0,5\)
Запишу по определению:
\( \displaystyle x=<<\left( -1 \right)>^
Всё готово, осталось только упростить, посчитав значение арксинуса.
Источник