Во всем мире принято использовать эти десять цифр для записи чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С их помощью создается любое натуральное число.
Название числа напрямую зависит от количества знаков. Однозначное — состоит из одного знака. Двузначное — из двух. Трехзначное — из трех и так далее.
Разряд — это позиция, на которой стоит цифра в записи. Их принято отсчитываются с конца.
Разряд единиц — то, чем заканчивается любое число.
Разряд десятков — то, что находится перед разрядом единиц.
Разряд сотен стоит перед разрядом десятков. На место отсутствующего разряда всегда можно поставить ноль.
Вычитание — это арифметическое действие, в котором отнимают меньшее число от большего. Большее число называется уменьшаемым, меньшее — вычитаемым. Результат их вычитания — разностью.
Свойства вычитания
Вычитание нуля из числа не изменяет этого числа.
Если из числа вычесть само это число, то разность равна нулю.
Чтобы вычесть сумму из числа, можно вычесть из этого числа одно слагаемое, из полученной разности — второе слагаемое.
a — (b + c) = a — b — c
Чтобы вычесть число из суммы, можно вычесть это число из одного слагаемого и полученную разность прибавить к сумме остальных слагаемых.
(a + b) — c = (a — c) + b = a + (b — c)
Чтобы прибавить разность к числу, можно прибавить к нему уменьшаемое и из полученной суммы вычесть вычитаемое.
а + (b — c) = a + b — c
Алгоритм вычитания в столбик
Вычитать столбиком проще, чем считать в уме, особенно при действиях с большими числами. Этот способ наглядный — помогает держать во внимании каждый шаг.
Рассмотрим алгоритм вычитания в столбик на примере: 4312 — 901.
Шаг 1. При вычитании столбиком самое главное — правильно записать исходные данные, чтобы самая правая цифра первого числа была под правой цифрой второго числа.
Большее число (уменьшаемое) записываем сверху. Слева между числами ставим знак минус. Вот так:
Шаг 2. Вычитание столбиком начинаем с самой правой цифры. Вычитаем по цифре (знаку). Результат записываем под чертой.
Шаг 3. Далее вычитаем из второй цифры справа: из «1» ноль.
Шаг 4. Теперь нам нужно вычесть из «3» девять. Это сделать невозможно. Поэтому займем десятку у соседа слева от тройки. Это цифра «4». Поставим над четверкой точку. Занятый десяток прибавим к «3»: 10 + 3 = 13.
Из «13» вычтем девять: 13 − 9 = 4.
Так как мы заняли десяток у «4», значит четверка уменьшилось на единицу. Об этом нам напоминает точка над «4»: 4 − 1 = 3. Вот, как это выглядит:
Рассмотрим пример вычитания в столбик чисел с нулями: 1009 — 423.
Шаг 1. Запишем числа в столбик. Большее число ставим сверху.
Вычитаем справа налево по одной цифре.
Шаг 2. Так как из нуля нельзя вычесть «2», занимаем у соседней цифры слева (ноль). Поставим над «0» точку. У нуля занять нельзя, поэтому смотрим на следующую цифру. Занимаем у «1» и ставим над ней точку. Теперь вычитаем не из нуля двойку, а из «10». Вот так:
Шаг 3. Над нулем стоит точка, поэтому нуль превращается в «9». Вычитаем из «9» четыре: 9 − 4 = 5.
Над «1» стоит точка. Единица уменьшается на «1»: 1 − 1 = 0. Если в результате разности левее всех цифр стоит ноль, то его записывать не надо.
Так выглядит алгоритм вычитания в столбик. Во 2 классе школьники могут сделать себе подсказку в виде таблички. А позже алгоритм запомнится и будет срабатывать автоматически, как «дважды два четыре».
Источник
Как умножать в столбик
О чем эта статья:
3 класс, 4 класс
Основные понятия
Во всем мире принято использовать эти десять цифр для записи чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С их помощью создается любое натуральное число.
Название числа напрямую зависит от количества знаков.
Однозначное — состоит из одного знака
Двузначное — из двух
Трехзначное — из трех и так далее.
Разряд — это позиция, на которой стоит цифра в записи. Их принято отсчитываются с конца.
Разряд единиц — то, чем заканчивается любое число. Разряд десятков — то, что находится перед разрядом единиц. Разряд сотен стоит перед разрядом десятков. На место отсутствующего разряда всегда можно поставить ноль.
В числе 429 содержится 0 тысяч, 4 сотни, 2 десятка и 9 единиц.
Умножение — арифметическое действие в котором участвуют два аргумента. Один множимый, второй множитель. Результат их умножения называется произведением.
Свойства умножения
1. От перестановки множителей местами произведение не меняется.
2. Результат произведения трёх и более множителей не изменится, если любую группу заменить произведением.
a * b * c = (a * b) * c = a * (b * c)
Самое главное в процессе вычисления — это знание таблицы умножения. Это сделает подсчет упорядоченным и быстрым.
Важно помнить правило: умножение в столбик с нулями дает в результате ноль
а * 0 = 0, где а — любое натуральное число.
Алгоритм умножения в столбик
Чтобы понять, как умножать в столбик — рассмотрим действия по шагам:
1. Запишем пример в строку. Выберем и подчеркнем из двух чисел наименьшее, чтобы не забыть при новой записи поставить его вниз.
2. Записываем произведение в виде столбика. Сначала наибольший множитель, затем наименьший, тот что мы подчеркнули ранее. Слева ставим соответствующий знак и проводим черту под которой будем записывать ход решения. Важно обратить внимание разряды, чтобы единицы стояли стоять под единицами, десятки под десятками и т. д.
3. Поэтапно производим необходимые действия. Каждую цифру первого множителя нужно умножить на крайнюю цифру второго. Это действие происходит справа налево: единицы, десятки, сотни.
Если результат получится двузначным, под чертой записывается только последняя его цифра. Остальное переносим в следующий разряд путем сложения со значением, полученным при следующем умножении.
4. После умножения на единицу второго множителя с остальными цифрами необходимо провести аналогичные манипуляции. Результаты записывать под чертой, сдвигаясь влево на одну позицию.
5. Складываем то, что нашли и получаем ответ.
Умножение на однозначное число
Для решения задачи по произведению двух натуральных чисел, одно из которых однозначное, а другое — многозначное, нужно использовать способ столбика. Для вычисления воспользуемся последовательностью шагов, которую рассмотрели выше.
Возьмем пример 234 * 2:
1. Запишем первый множитель, а под ним второй. Соответствующие разряды расположены друг под другом. Двойка находится под четверкой.
2. Последовательно умножаем каждое число в первом множителе на второй, начиная с единиц и продвигаясь к десяткам и сотням.
3. Ответ запишем под чертой:
Производить действия необходимо в следующей последовательности:
Умножение двух многозначных чисел
Если оба множителя — многозначные натуральные числа, нужно действовать следующим образом.
Рассмотрим пример 207 * 8063:
Сначала запишем наибольшее 8063, затем наименьшее 207. Нужно разместить цифры друг под другом справа налево:
Последовательно перемножаем значения разрядов. Результатом является неполное произведение.
Далее перемножаем десятки. Первый множитель умножим на значение разряда десятков второго и т.д. Результат запишем под чертой.
По аналогии действуем с сотыми. Ноль пропускаем в соответствии с правилом. Так получилось второе неполное произведение:
Далее складываем два произведения в столбик.
Получившееся семизначное число — результат умножения исходных натуральных чисел.
Ответ: 8 063 * 207 = 1669041.
Примеры на умножение в столбик
Самостоятельное решение задачек помогает быстрее запомнить правила и натренировать скорость. Неважно, в каком классе учится ребенок — в 1, 3 или 4 — эти примеры подойдут всем.
Повтори тему — деление в столбик, она очень полезная!
Источник
Вычитание столбиком. Правила вычитания в столбик.
Чтобы найти разность методом «вычитание столбиком» (другими словами, как считать в столбик или столбиком вычитание), необходимо следовать таким шагам:
поместить вычитаемое под уменьшаемое, записать единицы под единицами, десятки под десятками и т.д.
вычесть поразрядно.
если необходимо занять десяток из большего разряда, то над разрядом, в котором заняли, поставить точку. Над разрядом, для которого заняли, поставить 10.
если в разряде, в котором заняли, стоит 0, тогда занимаем из следующего разряда уменьшаемого и над ним ставим точку. Над разрядом, для которого заняли, поставить 9, т.к. один десяток занят.
Ниже рассмотренные примеры покажут вам как происходит вычитание двухзначных, трехзначных и любых многозначных чисел столбиком.
Вычитание чисел в столбик очень помогает при вычитании больших чисел (как и сложение в столбик). Лучше всего научиться на примере.
Необходимо записать числа одно под другим таким образом, чтобы крайняя правая цифра 1-го числа стала под крайней правой цифрой 2-го числа. Число, которое больше (уменьшаемое) записываем сверху. Слева между числами ставим знак действия, здесь это «-» (вычитание).
Вычитать нужно с крайней правой цифры. Вычитаем по одной цифре (знаку).
2 — 1 = 1. То, что у нас получается пишем под чертой:
Дальше вычитаем из 1 нуль. 1 — 0 = 1.
Далее необходимо вычесть из тройки 9. Это невозможно. Значит нужно занять десяток у цифры слева от тройки. Это четыре. Ставим над 4 точку. Занятый десяток прибавим к тройке.
Из 13 вычтем девять.
Так как мы заняли десяток у четверки, то она уменьшилось на 1. Для того, чтобы не забыть об этом у нас и стоит точка.
Вычитание столбиком из чисел, содержащих нули.
Опять же, разберем на примере:
Записываем числа в столбик. Которое больше — сверху. Начинаем вычитание справа налево по одной цифре. 9 — 3 = 6.
Из нуля вычесть 2 не получится, тогда опять занимаем у цифры слева. Это нуль. Ставим над нулем точку. И снова, у нуля занять не получится, тогда двигаемся дальше к следующей цифре. Занимаем у единицы. Ставим над ней точку.
Обратите внимание: когда в вычитании столбиком над 0 есть точка, нуль становится девяткой.
Над нашим нулем есть точка, значит, он стал девяткой. Вычитаем из нее 4. 9 — 4 = 5. Над единицей есть точка, то есть она уменьшается на 1. 1 — 1 = 0. Полученный нуль не нужно записывать.
Источник
Сложение натуральных чисел столбиком: правило, примеры
Сложение столбиком, или как еще говорят, сложение в столбик — это метод, широко используемый для сложения многозначных натуральных чисел. Суть этого метода в том, что сложение двух и более многозначных чисел сводится к нескольким простым операциям сложения однозначных чисел.
В статье подробно расписано, как выполнять сложение двух и большего количества многозначных натуральных чисел. Дано правило сложения чисел в столбик и примеры решения с разбором всех самых характерных ситуаций, возникающих при сложении чисел в столбик.
Сложение двух чисел в столбик: что нужно знать?
Прежде чем мы перейдем непосредственно к операции сложения в столбик, рассмотрим некоторые важные моменты. Для быстрого освоения материала желательно:
Знать и хорошо ориентироваться в таблице сложения. Так, при проведении промежуточных вычислений, вам не придется тратить время и постоянно обращаться к таблице сложения.
Помнить свойства сложения натуральных чисел. Особенно свойства, связанные со сложением нулей. Напомним их кратко. Если одно из двух слагаемых равно нулю, то сумма равна другому слагаемому. Сумма двух нулей есть нуль.
Знать правила сравнения натуральных чисел.
Знать, что такое разряд натурального числа. Напомним, что разряд — это позиция и значение цифры в записи числа. Разряд определяет значение цифры в числе — единицы, десятки, сотни, тысячи и т.д.
Сложение двух натуральных чисел в столбик
Опишем алгоритм сложения чисел столбиком с использованием конкретного примера. Пусть мы складываем числа 724980032 и 30095 . Сначала следует записать эти числа по правилам записи сложения в столбик.
Числа записываются одно под другим, цифры каждого разряда располагаются, соответственно, одна под другой. Слева ставим знак «плюс», а под числами проводим горизонтальную линию.
Теперь мысленно разбиваем запись на столбики по разрядам.
Все, что остается сделать — сложить однозначные числа в каждом столбике.
Начинаем с крайнего правого столбика (разряд единиц). Складываем числа, и под чертой записываем значение единиц. Если при сложении значение десятков в результате получилось отличным от нуля, запоминаем это число.
Складываем цифры второго столбика. К результату прибавляем число десятков, которое мы запомнили на предыдущем шаге.
Повторяем весь процесс с каждым столбиком, вплоть до крайнего левого.
Данное изложение — упрощенная схема алгоритма сложения натуральных чисел столбиком. Теперь, когда мы разобрались с сутью метода, рассмотрим каждый шаг подробно.
Сначала складываем единицы, то есть числа в правом столбце. Если у нас получилось число, меньшее чем 10 , записываем его в том же столбике и переходим к следующему. Если же результат сложения больше или равен 10 , то под чертой в первом столбике записываем значение разряда единиц, а значение разряда десятков — запоминаем. Например, получилось число 17 . Тогда записываем число 7 — значение единиц, а значение десятков — 1 — запоминаем. Обычно говорят: «семь пишем, один в уме».
В нашем примере, при сложении чисел первого столбика, мы получаем число 7 .
7 10 , поэтому записываем это число в разряд единиц результата, а запоминать нам ничего не нужно.
Далее складываем числа в следующем столбце, то есть в разряде десятков. Проводим те же действия, только к сумме нужно прибавить число, которое мы держали в уме. Если сумма получилась меньше 10 , просто записываем число под вторым столбиком. Если же результат больше или равен 10 , записываем во втором столбике значение единиц этого числа, а цифру из разряда десятков запоминаем.
В нашем случае мы складываем числа 3 и 9 , в результате имеем 3 + 9 = 12 . На предыдущем шаге мы ничего не запоминали, поэтому к этому результату ничего прибавлять не нужно.
12 > 10 , поэтому во втором столбике записываем цифру 2 из разряда единиц, а цифру 1 из разряда десятков держим в уме. Для удобства можно записать это число над следующим столбиком другим цветом.
Переходя к третьему, четвертому и так далее столбику повторяем действие, пока столбики не закончатся.
В третьем столбике сумма цифр равна нулю ( 0 + 0 = 0 ). К этой сумме прибавляем то число, которое ранее держали в уме, и получаем 0 + 1 = 1 . записываем:
Переходя к следующему столбцу также складываем 0 + 0 = 0 и записываем в результате 0 , так как на предыдущем шаге мы ничего не запоминали.
Следующий шаг дает 8 + 3 = 11 . В столбике записываем цифру 1 из разряда единиц. Цифру 1 из разряда десятков держим в уме и переходим к следующему столбцу.
Этот столбик содержит только одно число 9 . Если бы у нас не было в памяти числа 1 , мы бы просто переписали число 9 под горизонтальную черту. Однако, учитывая, что не предыдущем шаге мы запомнили число 1 , нужно сложить 9 + 1 и записать результат.
Поэтому, под горизонтальной чертой мы записываем 0 , а единицу снова держим в уме.
Переходя к следующему столбику складываем 4 и 1 , результат пишем под чертой.
Следующий столбик содержит только число 2 . Так на предыдущем шаге мы ничего не запоминали, просто переписываем это число под черту.
Также поступаем и с последним столбиком, содержащим число 7 .
Столбцов более нет, и в памяти также ничего нет, поэтому можно сказать, что операция сложения в столбик окончена. Число, записанное под чертой — результат сложения двух верхних чисел.
Чтобы разобраться со всеми возможными нюансами, рассмотрим еще несколько примеров.
Пример 1. Сложение натуральных чисел столбиком
Сложим два натуральных числа: 21 и 36 .
Сначала запишем эти числа по правилу записи при сложении столбиком:
Начав с правого столбика, приступаем к сложению чисел.
Так как 7 10 , записываем 7 под чертой.
Складываем числа во втором столбике.
Так как 5 10 , а в памяти с предыдущего шага ничего нет, записываем результат
В памяти и в следующем столбике чисел более нет, сложение закончено. 21 + 36 = 57
Сколько будет 47 + 38 ?
7 + 8 = 15 , поэтому запишем 5 в первом столбике под чертой, а 1 будем держать в уме.
Теперь складываем значения из разряда десятков: 4 + 3 = 7 . Не забываем о единице и прибавляем ее к результату:
7 + 1 = 8 . Полученное число записываем под чертой.
Это и есть результат сложения.
Теперь возьмем два трехзначных числа и выполним их сложение.
3 + 9 = 12 ; 12 > 10
Записываем 2 под чертой, 1 держим в уме.
8 + 5 = 13 ; 13 > 10
Складываем 13 и запомненную единицу, получаем:
13 + 1 = 14 ; 14 > 10
Записываем 4 под чертой, 1 держим в уме.
Не забываем, что на предыдущем шаге мы запомнили 1 .
Записываем 0 под чертой, 1 держим в уме.
В последнем столбике переносим единицу, которую мы запомнили ранее, под черту, и получаем окончательный результат сложения.
Найдем сумму чисел 56927 и 90 .
Как всегда, сначала записываем условие:
Записываем 7 под чертой и переходим к следующему столбику.
2 + 9 = 11 ; 11 > 10
Записываем 1 под чертой, 1 держим в уме и переходим к следующему столбику.
Записываем 0 под чертой, 1 держим в уме и переходим к следующему столбику.
Столбик содержит одно число 6 . Складываем его с запомненной единицей.
Записываем 7 под чертой и переходим к следующему столбику.
Столбик содержит одно число 5 . Переносим его под черту и заканчиваем операцию сложения.
56927 + 90 = 57017
Следующий пример приведем без промежуточных результатов и пояснений, как образец записи сложения в столбик на практике.
Пример 5. Сложение натуральных чисел столбиком
Ответ: 5807 + 4137502 = 4143309
Сложение столбиком трех и более чисел. Что нужно знать?
Во первых, нужно усвоить всю информацию, уже изложенную в этой статье. Во вторых, также помним, что нули не влияют на результат сложения, и сколько бы не было в выражении слагаемых нулей, их сумма будет равна нулю.
Этапы сложения в столбик трех и более чисел аналогичны этапам из уже рассмотренных примеров с двумя числами. Обратимся к практике и поясним ход решения.
Пример 5. Сложение трех натуральных чисел столбиком
Сложим столбиком числа 274 , 3082 и 201297 .
Сначала делаем запись:
Начинаем с первого столбика, справа налево.
4 + 2 + 7 = 13 ; 13 > 10
3 пишем, 1 в уме. Переходим ко второму столбику.
7 + 8 + 9 = 24 ; 24 + 1 = 25 ; 25 > 10
5 пишем, 2 в уме. Переходим к третьему столбику.
2 + 0 + 2 = 4 ; 4 + 2 = 6 ; 6 10
6 пишем, и ничего не запоминаем. Переходим к четвертому столбику.
4 пишем, и ничего не запоминаем. Переходим к пятому столбику. Пятый и шестой столбики содержат по одному числу, в уме с предыдущих шагов мы ничего не держим, поэтому просто переносим числа из последних двух столбиков под черту.
Ответ: 274 + 3082 + 201297 = 204653
Совет: при сложении трех и большего количества чисел в столбик, если вычисления выходят слишком громоздкими, бывает удобнее последовательно сложить два числа, затем еще два и так далее.