Способ решения неравенства вида где x переменная

Содержание
  1. Решение линейных неравенств
  2. Основные понятия
  3. Типы неравенств
  4. Линейные неравенства: свойства и правила
  5. Правила линейных неравенств
  6. Решение линейных неравенств
  7. Равносильные преобразования
  8. Метод интервалов
  9. Графический способ
  10. Метод интервалов, решение неравенств
  11. Определение квадратного неравенства
  12. Решение неравенства графическим методом
  13. Решение неравенства методом интервалов
  14. Плюс или минус: как определить знаки
  15. Показательные неравенства
  16. Определение показательных неравенств
  17. Как решать показательные неравенства
  18. Показательные неравенства, сводящиеся к простейшим
  19. Пример 1
  20. Показательные неравенства, сводящиеся к квадратным
  21. Пример 1
  22. Показательные неравенства, сводящиеся к рациональным
  23. Пример 1
  24. Пример 2
  25. Однородные показательные неравенства
  26. Пример 1
  27. Неравенства, решаемые графическим методом
  28. Пример 1
  29. Пример 2

Решение линейных неравенств

О чем эта статья:

Основные понятия

Алгебра не всем дается легко с первого раза. Чтобы не запутаться во всех темах и правилах, важно изучать темы последовательно и по чуть-чуть. Сегодня узнаем, как решать линейные неравенства.

Неравенство — это алгебраическое выражение, в котором используются знаки ≠, , ≤, ≥.

Линейные неравенства — это неравенства вида:

где a и b — любые числа, a ≠ 0, x — неизвестная переменная. Как решаются неравенства рассмотрим далее в статье.

Решение — значение переменной, при котором неравенство становится верным.

Решить неравенство значит сделать так, чтобы в левой части осталось только неизвестное в первой степени с коэффициентом равном единице.

Типы неравенств

  1. Строгие — используют только больше (>) или меньше ( b — это значит, что a больше, чем b.
  2. a > b и b > и

Линейные неравенства: свойства и правила

Вспомним свойства числовых неравенств:

  1. Если а > b , то b а.
  2. Если а > b и b > c, то а > c. И также если а b, то а + c > b+ c (и а – c > b – c).

Если же а b и c > d, то а + c > b + d.

Если а 8 почленно вычесть 3 > 2, получим верный ответ 9 > 6. Если из 12 > 8 почленно вычесть 7 > 2, то полученное будет неверным.

Если а d, то а – c b, m — положительное число, то mа > mb и

Обе части можно умножить или разделить на одно положительное число (знак при этом остаётся тем же).

Если же а > b, n — отрицательное число, то nа

Обе части можно умножить или разделить на одно отрицательное число, при этом знак поменять на противоположный.

  1. Если а > b и c > d, где а, b, c, d > 0, то аc > bd.

Если а 0, то аc b, где а, b > 0, то а2 > b2, и если а b, где а, b > 0, то
b» height=»45″ src=»https://lh5.googleusercontent.com/MuRDPQeqxIZvVG_mHVaktFp6nlIEEbz8zdRs1ZW8CZbZacJrS4aKzrDyhKxXpJvc35TSAgiRpqr-63sGzL9_sPU80vFhR0ZDAmSmRFZtwEldDkWRttfSGuaJJIb7xWxZDugU3xTt»>

Решением неравенства с одной переменной называется значение переменной, которое трансформирует его в верное числовое неравенство.

Чтобы упростить процесс нахождения корней неравенства, нужно провести равносильные преобразования — то заменить данное неравенство более простым. При этом все решения должны быть сохранены без возникновения посторонних корней.

Свойства выше помогут нам использовать следующие правила.

Правила линейных неравенств

  1. Любой член можно перенести из одной части в другую с противоположным знаком. Знак неравенства при этом не меняется.
  • 2x − 3 > 6 ⇒ 2x > 6 + 3 ⇒ 2x > 9.
  1. Обе части можно умножить или разделить на одно положительное число. Знак неравенства при этом не меняется.
  • Умножим обе части на пять 2x > 9 ⇒ 10x > 45.
  1. Обе части можно умножить или разделить на одно отрицательное число. Знак неравенства при этом меняется на противоположный.
  • Разделим обе части на минус два 2x > 9 ⇒ 2x : –2 > 9 : -2 ⇒ x

    Решение линейных неравенств

    Со школьных уроков мы помним, что у неравенств нет ярко выраженных различий, поэтому рассмотрим несколько определений.

    Определение 1. Линейное неравенство с неизвестной переменной x имеет вид ax + b > 0, когда вместо > используется любой знак c , где x — переменная, a, c — некоторые числа.

    Мы не знаем может ли коэффициент равняться нулю, поэтому: 0 * x > c и 0 * x 0 — в первом и ax > c — во втором;

  • допустимость равенства нулю: a ≠ 0 — в первом, a = 0 — во втором.

Неравенства ax + b > 0 и ax > c равносильные, так как получены переносом слагаемого из одной части в другую.

Определение 3. Линейные неравенства с одной переменной x выглядят так:

где a и b — действительные числа. А на месте x может быть обычное число.

Равносильные преобразования

Для решения ax + b , ≥) нужно применить равносильные преобразования неравенства. Рассмотрим два случая: когда коэффициент равен и не равен нулю.

Алгоритм решения ax + b , ≥) является верным, когда исходное имеет решение при любом значении. Неверно тогда, когда исходное не имеет решений.

Рассмотрим пример: 0 * x + 5 > 0.

Как решаем:

  • Данное неравенство 0 * x + 5 > 0 может принимать любое значение x.
  • Получается верное числовое неравенство 5 > 0. Значит его решением может быть любое число.

Метод интервалов

Метод интервалов можно применять для линейных неравенств, когда значение коэффициента x не равно нулю.

Метод интервалов это:

  • введение функции y = ax + b;
  • поиск нулей для разбиения области определения на промежутки;
  • отметить полученные корни на координатной прямой;
  • определение знаков и отмечание их на интервалах.

Алгоритм решения ax + b , ≥) при a ≠ 0 с использованием метода интервалов:

  • найдем нули функции y = ax + b для решения уравнения ax + b = 0.

Если a ≠ 0, тогда решением будет единственный корень — х₀;

  • начертим координатную прямую с изображением точки с координатой х₀, при строгом неравенстве точку рисуем выколотой, при нестрогом — закрашенной;
  • определим знаки функции y = ax + b на промежутках.

Для этого найдем значения функции в точках на промежутке;

    если решение неравенства со знаками > или ≥ — добавляем штриховку над положительным промежутком на координатной прямой, если 0.

Как решаем:

  1. В соответствии с алгоритмом, сначала найдем корень уравнения − 6x + 12 = 0,

Изобразим координатную прямую с отмеченной выколотой точкой, так как неравенство является строгим.

  1. Определим знаки на промежутках.

Чтобы определить на промежутке (−∞, 2), необходимо вычислить функцию y = −6x + 12 при х = 1. Получается, что −6 * 1 + 12 = 6, 6 > 0. Знак на промежутке является положительным.

Определяем знак на промежутке (2, + ∞) , тогда подставляем значение х = 3. Получится, что −6 * 3 + 12 = − 6, − 6

  1. Выполним решение со знаком >. Штриховку сделаем над положительным промежутком.

По чертежу делаем вывод, что решение имеет вид (−∞, 4) или x

Графический способ

Смысл графического решения неравенств заключается в том, чтобы найти промежутки, которые необходимо изобразить на графике.

Алгоритм решения y = ax + b графическим способом

  • во время решения ax + b 0 произвести определение промежутка, где график изображается выше Ох;
  • во время решения ax + b ≥ 0 определить промежуток, где график находится выше оси Ох или совпадает.

Рассмотрим пример: −5 * x − √3 > 0.

Как решаем

  • Так как коэффициент при x отрицательный, данная прямая является убывающей.
  • Координаты точки пересечения с Ох равны −√3 : 5.
  • Неравенство имеет знак >, значит нужно обратить внимание на промежуток выше оси Ох.
  • Поэтому открытый числовой луч (−∞, −√3 : 5) будет решением.

Ответ: (−∞, −√3 : 5) или x

Источник

Метод интервалов, решение неравенств

О чем эта статья:

Определение квадратного неравенства

Неравенство — алгебраическое выражение, в котором используются знаки ≠, , ≤, ≥.

Числовое неравенство — это такое неравенство, в записи которого по обе стороны от знака находятся числа или числовые выражения.

Решение — значение переменной, при котором неравенство становится верным.

Решить неравенство значит найти множество, для которых оно выполняется.

Квадратное неравенство выглядит так:

где x — переменная,

Квадратное неравенство можно решить двумя способами:

  • графический метод;
  • метод интервалов.

Решение неравенства графическим методом

При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения ax^2 + bx + c = 0. Чтобы найти корни, нужно найти дискриминант данного уравнения.

Как дискриминант влияет на корни уравнения:

  1. D = 0. Если дискриминант равен нулю, тогда у квадратного уравнения есть один корень;
  2. D > 0. Если дискриминант больше нуля, тогда у квадратного уравнения есть два корня;
  3. D

Решение неравенства методом интервалов

Метод интервалов — это специальный алгоритм, который предназначен для решения рациональных неравенств.

Рациональное неравенство имеет вид f(x) ≤ 0, где f(x) — рациональная функция. При этом знак может быть любым: >, или ≥ — наносим штриховку над промежутками со знаками +.

Если неравенство со знаком

Плюс или минус: как определить знаки

Можно сделать вывод о знаках по значению старшего коэффициента a:

если a > 0, последовательность знаков: +, −, +,

если a 0, последовательность знаков: +, +,

если a 0 имеет два корня, то знаки его значений на промежутках чередуются. Это значит, что достаточно определить знак на одном из трех промежутков и расставить знаки над оставшимися промежутками, чередуя их. В результате возможна одна из двух последовательностей: +, −, + или −, +, −.

  • Если квадратный трехчлен при D = 0 имеет один корень, то этот корень разбивает числовую ось на два промежутка, а знаки над ними будут одинаковыми. Это значит, что достаточно определить знак над одним из них и над другим поставить такой же. При этом получится, либо +, +, либо −, −.
  • Когда квадратный трехчлен корней не имеет (D

    Теперь мы знаем пошаговый алгоритм. Чтобы закрепить материал потренируемся на примерах и научимся использовать метод интервалов для квадратных неравенств.

    Пример 1. Решить неравенство методом интервалов: x^2 — 5x + 6 ≥ 0.



      Разложим квадратный трехчлен на множители.

    Неравенство примет вид:

    Проанализируем два сомножителя:

    Первый: х — 3. Этот сомножитель может поменять знак при х = 3, значит при х 0 принимает положительные значения: х — 3 > 0.

    Второй: х — 2. Для этого сомножителя такая «знаковая» точка: х = 2.

    Вывод: знак произведения (х — 3) * (х — 2) меняется только при переходе переменной через значения х = 3 и х = 2.

    В этом весь смысл метода интервалов: определить интервалы значений переменной, на которых ситуация не меняется и рассматривать их как единое целое.

  • Построим чертеж.
  • Рассмотрим интервалы в том же порядке, как пишем и читаем: слева направо.

    Отобразим эти данные на чертеже:

    2 3 — на этом интервале ситуация не изменяется. Значит нужно взять любое значение из этого интервала и подставить его в произведение. Например: х = 25.

    • (25 — 3) (25 — 2) = 22*23 = 506 > 0

    Вывод: при х > 3 верно неравенство (х — 3) * (х — 2) > 0. Внесем эти данные в чертеж.


    Исходное неравенство: (х — 3) * (х — 2) ≥ 0.

    Если (х — 3) * (х — 2) > 0:

    Если (х — 3) (х — 2) = 0 — при х1 = 3, х2 = 2.

    Удовлетворяющие неравенству точки закрасим, а не удовлетворяющие — оставим пустыми.

    Ответ: х ≤ 0, х ≥ 3.

    Пример 2. Применить метод интервалов для решения неравенства х2+4х+3

    Источник

    Показательные неравенства

    О чем эта статья:

    10 класс, 11 класс, ЕГЭ/ОГЭ

    Определение показательных неравенств

    Показательными считаются неравенства, которые включают в себя показательную функцию. Другими словами, это неравенства с переменной в показателе степени: a f(x) > a g(x) , a f(x) g(x) .

    Из них показательно-степенными неравенствами являются те, в которых есть переменные и в показателе степени, и в основании.

    Для изучения этой темы стоит повторить:

    И, конечно, для решения тригонометрических и логарифмических показательных неравенств также придется вспомнить формулы соответствующих разделов алгебры.

    Если все это еще свежо в памяти, давайте приступим. Как и к показательным уравнениям, к неравенствам стоит подходить, помня о свойствах показательной функции. Напомним, что она выглядит так: y = a x , где a > 0 и a ≠ 1. Два графика ниже дают представление о том, на что похожа такая функция, когда основание степени а больше и меньше единицы. Наверняка вы уже догадались, каково главное свойство этой функции. Да, она монотонна.

    При этом заметьте — значения а всегда больше нуля. На практике в этом несложно убедиться, если возводить какое-либо число во всевозможные степени, включая отрицательные. Например: 2 -2 = 4, 2 -4 = 1/16 и т. д. Значение функции будет уменьшаться, но никогда не достигнет нуля.

    Для любых а и х верно неравенство a x > 0, т. е. показательная функция не принимает отрицательных значений.

    Запишем следствие монотонности показательной функции в виде формул:

    • a f(x) > a g(x) f(x) > g (x), когда функция возрастает, т. е. а > 1;
    • a f(x) > a g(x) f(x)

    Как решать показательные неравенства

    Как мы уже говорили, для успешного освоения этой темы нужно хорошенько повторить все, что касается показательных уравнений. Способы решения показательных неравенств выглядят примерно так же — мы будем пытаться упростить выражение, получить одинаковые степени или одинаковые основания, по возможности свести все к квадратному или рациональному уравнению. Но есть и свои тонкости.

    Допустим, у нас есть простейшее показательное неравенство:

    Если вы помните, как решались показательные уравнения, не придется долго думать, что делать с таким неравенством — приведем его к одинаковому основанию:

    Казалось бы, все логично, но всегда ли можно смело вычеркивать одинаковые основания степеней? А что, если вместо 3 у нас основание степени будет 0,5? Посмотрим:

    Проверим, верно ли в таком случае х > 2.

    0,5 3 = 0, 125 и т. д.

    Как видите, на самом деле в этом случае х

    Если а > 1, то a x > a n a > n, и при решении неравенства можно просто убрать одинаковые основания степени.

    Если 0 x > a n a

    Наконец, если рассмотреть случай, когда а х > 9

    Логичное, на первый взгляд, предположение, что х > 2, не выдержит проверки, потому что:

    Если продолжить этот ряд, знаки будут чередоваться, и наш корень будет попеременно то меньше, то больше 2. Поэтому для ясности всегда предполагается, что основание степени — положительное число.

    Это были общие правила, а сейчас рассмотрим разные виды показательных неравенств и примеры с решениями.

    Показательные неравенства, сводящиеся к простейшим

    Решая показательные уравнения, вы наверняка первым делом исследовали их на возможность приведения к одинаковым основаниям или одинаковым степенным функциям. Так вот, с неравенствами можно делать то же самое! Помните лишь о смене знака, если основание степени меньше единицы. И да пребудет с вами сила. 😎

    Попробуем на примере несложного показательного неравенства с разными основаниями.

    Пример 1

    Поскольку 3 больше 1, знак не меняем:

    Показательные неравенства, сводящиеся к квадратным

    Снова давайте вспомним, как аналогичный метод применялся к показательным уравнениям. Если все переменные имели общий множитель, его можно было обозначить новой переменной — в итоге у нас, как правило, получалось квадратное уравнение. Нужно было лишь найти дискриминант и произвести обратную замену. И снова алгоритм решения показательных неравенств будет совершенно таким же.

    Пример 1

    Наименьший общий множитель в данном случае будет 3 х , обозначим его новой переменной у и перенесем все слагаемые в левую сторону.

    (3 х ) 2 — 12 × 3 х + 27 х = у

    y 2 — 12y + 27 х 1 х 2

    Поскольку 3 > 1, мы не меняем знак.

    1 2 x — 5 sinx + 2 2 — 5y + 2

    Показательные неравенства, сводящиеся к рациональным

    Как вы, наверное, помните из предыдущего курса алгебры, рациональные показательные неравенства — это такие, в которых левая и правая часть представляют собой дробно-рациональные функции. Метод их решения таков: нужно перенести все в левую часть, чтобы в правой остался лишь ноль, и привести к общему знаменателю. Далее решаем уравнение, отмечаем все корни на оси и применяем метод интервалов (если забыли, что это такое — повторите).

    Важно помнить: если в числителе и знаменателе встретятся одинаковые множители с переменной, сокращать их нельзя.

    Пример 1

    Преобразуем неравенство указанным выше способом:

    (обратите внимание, мы избавились от минуса в числителе и поменяли знак неравенства).

    Поскольку выражение 2 х + 2 в любом случае будет больше нуля, мы можем смело его исключить из неравенства.

    (2 х — 2) × (2 х — 1/2) × (2 х — 3) > 0

    Пример 2

    Обозначим 3 х через новую переменную y:

    3 х = y, при условии что 3 х > 0.

    Применим метод интервалов и получим:

    Вернем на место нашу старую переменную:

    Однородные показательные неравенства

    Однородными называются такие показательные неравенства, где в каждом слагаемом сумма степеней одинакова.

    Иногда такие выражения бывают очень длинными и запутанными, но не стоит этого пугаться. Практически все неравенства с однородными показательными функциями решаются по одному принципу: стараемся упростить выражение, разделив его на одночлен, а затем при необходимости делаем замену переменных.

    Пример 1

    4 х — 2 × 5 2х — 2 х × 5 х > 0

    2 × 2 х — 2 × 5 2х — 2 х × 5 х > 0

    В левой части неравенства мы видим однородные функции относительно 2 х и 5 х . Следовательно, можно разделить обе части на 2 2х или 5 2х . Выберем 5 2х , т. е. 25 х . В итоге у нас получится:

    Если обозначить (2/5) х новой переменной y, получим квадратное неравенство:

    Неравенства, решаемые графическим методом

    Этот метод решения показательных неравенств — самый наглядный, и для многих он может показаться самым простым. Нужно лишь построить графики функций, заданных в левой и правой части выражения, а затем посмотреть, в какой точке они пересекаются. Если бы мы имели дело с уравнением, эта точка стала бы корнем.

    Но поскольку мы рассматриваем неравенства, нужно будет выделить искомую область. Для неравенства f(x) > g(x) это будет та область, где график функции f(x) находится выше.

    Пример 1

    2 х х и 3 — х, а также точка их пересечения.

    Очевидно, что точкой пересечения является х = 1, при этом график функции 2 х ниже в области от -∞ до 1.

    Пример 2

    Начертим графики этих двух функций, чтобы найти точку пересечения.

    Искомой точкой будет х = -1, а областью, где функция (1/2) х находится выше — диапазон от -∞ до -1.

    Источник

    Читайте также:  Фасетный способ классификации пример
    Оцените статью
    Разные способы