- Уравнения, часть С
- Теория к заданию 13 из ЕГЭ по математике (профильной)
- Уравнения, часть $С$
- Схема решения сложных уравнений:
- ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):
- Логарифмические уравнения
- Дробно рациональные уравнения
- Показательные уравнения
- Виды показательных уравнений:
- Применение формул сокращенного умножения
- Метод группировки
- С помощью формулы квадратного трехчлена.
- Нестандартные способы решения задач ЕГЭ типа С
Уравнения, часть С
Теория к заданию 13 из ЕГЭ по математике (профильной)
Уравнения, часть $С$
Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.
Схема решения сложных уравнений:
- Перед решением уравнения надо для него записать область допустимых значений (ОДЗ).
- Решить уравнение.
- Выбрать из полученных корней уравнения то, которые удовлетворяют ОДЗ.
ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):
1. Выражение, стоящее в знаменателе, не должно равняться нулю.
2. Подкоренное выражение, должно быть не отрицательным.
3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.
4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.
Логарифмические уравнения
Для решения логарифмических уравнений необходимо знать свойства логарифмов: все свойства логарифмов мы будем рассматривать для $a > 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.
1. Для любых действительных чисел $m$ и $n$ справедливы равенства:
2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.
3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию
4. При умножении двух логарифмов можно поменять местами их основания
6. Формула перехода к новому основанию
7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение
Можно выделить несколько основных видов логарифмических уравнений:
Представим обе части уравнения в виде логарифма по основанию $2$
Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.
Т.к. основания одинаковые, то приравниваем подлогарифмические выражения
Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые
Проверим найденные корни по условиям $\table\<\ x^2-3x-5>0;\ 7-2x>0;$
При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень
В данном методе надо:
Решите уравнение $log_<2>√x+2log_<√x>2-3=0$
1. Запишем ОДЗ уравнения:
$\table\<\ х>0,\text»так как стоит под знаком корня и логарифма»;\ √х≠1→х≠1;$
2. Сделаем логарифмы по основанию $2$, для этого воспользуемся во втором слагаемом правилом перехода к новому основанию:
3. Далее сделаем замену переменной $log_<2>√x=t$
4. Получим дробно — рациональное уравнение относительно переменной t
Приведем все слагаемые к общему знаменателю $t$.
Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.
5. Решим полученное квадратное уравнение по теореме Виета:
6. Вернемся в п.3, сделаем обратную замену и получим два простых логарифмических уравнения:
Прологарифмируем правые части уравнений
Приравняем подлогарифмические выражения
Чтобы избавиться от корня, возведем обе части уравнения в квадрат
7. Подставим корни логарифмического уравнения в п.1 и проверим условие ОДЗ.
Первый корень удовлетворяет ОДЗ.
$\<\table\ 16 >0; \16≠1;$ Второй корень тоже удовлетворяет ОДЗ.
Дробно рациональные уравнения
- Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю.
- Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно-рациональным.
Чтобы решить дробно рациональное уравнение, необходимо:
- Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ)
- Найти общий знаменатель дробей, входящих в уравнение;
- Умножить обе части уравнения на общий знаменатель;
- Решить получившееся целое уравнение;
- Исключить из его корней те, которые не удовлетворяют условию ОДЗ.
- Если в уравнении участвуют две дроби и числители их равные выражения, то знаменатели можно приравнять друг к другу и решить полученное уравнение, не обращая внимание на числители. НО учитывая ОДЗ всего первоначального уравнения.
Показательные уравнения
Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.
При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.
2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются
3. При возведении степени в степень основание остается прежним, а показатели перемножаются
4. При возведении в степень произведения в эту степень возводится каждый множитель
5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель
6. При возведении любого основания в нулевой показатель степени результат равен единице
7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби
8. Радикал (корень) можно представить в виде степени с дробным показателем
Виды показательных уравнений:
1. Простые показательные уравнения:
а) Вида $a^
b) Уравнение вида $a^
Для решения таких уравнений надо обе части прологарифмировать по основанию $a$, получается
2. Метод уравнивания оснований.
3. Метод разложения на множители и замены переменной.
- Для данного метода во всем уравнении по свойству степеней надо преобразовать степени к одному виду $a^
$. - Сделать замену переменной $a^
=t, t > 0$. - Получаем рациональное уравнение, которое необходимо решить путем разложения на множители выражения.
- Делаем обратные замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^
=t$, решаем его и результат записываем в ответ.
По свойству степеней преобразуем выражение так, чтобы получилась степень 2^x.
Сделаем замену переменной $2^x=t; t>0$
Получаем кубическое уравнение вида
Умножим все уравнение на $2$, чтобы избавиться от знаменателей
Разложим левую часть уравнения методом группировки
Вынесем из первой скобки общий множитель $2$, из второй $7t$
Дополнительно в первой скобке видим формулу разность кубов
Далее скобку $(t-1)$ как общий множитель вынесем вперед
Произведение равно нулю, когда хотя бы один из множителей равен нулю
Решим первое уравнение
Решим второе уравнение через дискриминант
Получили три корня, далее делаем обратную замену и получаем три простых показательных уравнения
4. Метод преобразования в квадратное уравнение
- Имеем уравнение вида $А·a^<2f(x)>+В·a^
+С=0$, где $А, В$ и $С$ — коэффициенты. - Делаем замену $a^
=t, t > 0$. - Получается квадратное уравнение вида $A·t^2+B·t+С=0$. Решаем полученное уравнение.
- Делаем обратную замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^
=t$, решаем его и результат записываем в ответ.
Способы разложения на множители:
- Вынесение общего множителя за скобки.
Чтобы разложить многочлен на множители путем вынесения за скобки общего множителя надо:
- Определить общий множитель.
- Разделить на него данный многочлен.
- Записать произведение общего множителя и полученного частного (заключив это частное в скобки).
Разложить на множители многочлен: $10a^<3>b-8a^<2>b^2+2a$.
Общий множитель у данного многочлена $2а$, так как на $2$ и на «а» делятся все члены. Далее найдем частное от деления исходного многочлена на «2а», получаем:
Это и есть конечный результат разложения на множители.
Применение формул сокращенного умножения
1. Квадрат суммы раскладывается на квадрат первого числа плюс удвоенное произведение первого числа на второе число и плюс квадрат второго числа.
2. Квадрат разности раскладывается на квадрат первого числа минус удвоенное произведение первого числа на второе и плюс квадрат второго числа.
3. Разность квадратов раскладывается на произведение разности чисел и их сумму.
4. Куб суммы равен кубу первого числа плюс утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа плюс куб второго числа.
5. Куб разности равен кубу первого числа минус утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа и минус куб второго числа.
6. Сумма кубов равна произведению суммы чисел на неполный квадрат разности.
7. Разность кубов равна произведению разности чисел на неполный квадрат суммы.
Метод группировки
Методом группировки удобно пользоваться, когда на множители необходимо разложить многочлен с четным количеством слагаемых. В данном способе необходимо собрать слагаемые по группам и вынести из каждой группы общий множитель за скобку. У нескольких групп после вынесения в скобках должны получиться одинаковые выражения, далее эту скобку как общий множитель выносим вперед и умножаем на скобку полученного частного.
Разложить многочлен на множители $2a^3-a^2+4a-2$
Для разложения данного многочлена применим метод группировки слагаемых, для этого сгруппируем первые два и последние два слагаемых, при этом важно правильно поставить знак перед второй группировкой, мы поставим знак + и поэтому в скобках запишем слагаемые со своими знаками.
Далее из каждой группы вынесем общий множитель
После вынесения общих множителей получили пару одинаковых скобок. Теперь данную скобку выносим как общий множитель.
Произведение данных скобок — это конечный результат разложения на множители.
С помощью формулы квадратного трехчлена.
Если имеется квадратный трехчлен вида $ax^2+bx+c$, то его можно разложить по формуле
$ax^2+bx+c=a(x-x_1)(x-x_2)$, где $x_1$ и $x_2$ — корни квадратного трехчлена
Источник
Нестандартные способы решения задач ЕГЭ типа С
Нестандартные способы решения задач ЕГЭ типа С
Попова Татьяна Спартаковна, учитель математики
Практика показывает, что задачи с параметрами представляют для выпускников наибольшую сложность как в логическом, так и в техническом плане и поэтому умение их решать во многом предопределяет успешную сдачу экзамена.
На экзаменах часто встречаются задачи, отличающиеся большим разнообразием идей и необходимостью применения очень разные методы решений. Первое решение задачи редко бывает лучшим, и естественно нужно стремиться к тому, чтобы найти более простое и красивое решение. Умение выбрать подходящий метод вырабатывается в процессе решения одной и той же задачи различными методами. Получив несколько решений данной задачи, нетрудно выделить лучшее и оценить методы решения.
В данной работе приведены наиболее рациональные и красивые способы решения некоторых задач части С, предлагаемых на ЕГЭ. Например, при решении следующей и подобных ей задач, часто применяется исследование корней квадратного трехчлена на числовой оси в зависимости от параметра а. Теперь рассмотрим другое решение.
1. Найдите все значения а, для которых при каждом х из промежутка [-3; -1) значение выражения х 4 -7х 2 -3 не равно значению выражения ах 2 .
Рассмотрим функции у= х 4 -7х 2 -3 и у= ах 2 . Введем замену х 2 = t . Задача получает следующую формулировку:
Найдите все значения а, для которых при каждом t из промежутка (1; 9] значение выражения t 2 -7 t -3 не равно значению выражения а t .
График функции f ( t )= t 2 -7 t -3 представляет собой параболу на интервале (1;9], графиком функции у= а t является прямая, проходящая через начало координат (см. рис1) Значит, нужно найти такие а, что прямая и парабола на интервале (1; 9] не имеют общих точек. Для этого найдем значения функции f ( t ) на концах интервала: f (1)=-9 и f (9)=15. Так как а есть тангенс угла наклона прямой у= а t , получаем, что а
и а
.
Три числа, принадлежащие интервалам (0;2), (2;3), (3;5) являются членами арифметической прогрессии. Какие значения может принимать величина , если число а принадлежит промежутку (0;2), d — разность прогрессии?
Решение: по условию задачи ;
;
На координатной плоскости с горизонтальной осью d и вертикальной осью а построим прямые а=0; а=2; а+ d =2; а+ d =3; а+2 d =3; а+2 d =5. Замкнутая область в виде шестиугольника, ограниченная прямыми, есть множество чисел, удовлетворяющих условию (см. рис2).
— уравнение окружности с центром в начале координат, радиус которой должен принимать значение из данной области. Наименьшего значения радиус достигает в точке (1;1) и равен
, наибольшее значение равно 2,5 в точке (2,5;0). Ответ: (
;2,5).
Найти все значения а, при которых уравнения и
имеют одинаковое число корней.
1) Построим графики функций и у=ах на одной координатной плоскости. Видно, что при а=0 уравнение имеет 2 корня. Рассмотрим производную функции
при
:
. Теперь найдем точку касания х0 и угловой коэффициент касательной: зная, что угловой коэффициент касательной есть производная в точке касания х0 и в то же время тангенс угла наклона касательной выпишем уравнение
. х0=0. Находим, что а=4. Значит при
уравнение имеет 3 корня. При
уравнение имеет 1 корень. Рассматривая функцию
на промежутках (
находим, что а=-4. Значит, при
функция имеет 2 корня, при
1 корень.
2) Рассмотрим и у=ах. Рассуждая аналогично, находим, что при
и при а=-4 прямая у=ах служит касательной к графику функции
. Делаем вывод, что при а=0 нет решений, при
и
имеется 1 корень, при
и а=-4 2 корня, при
и
имеется 3 корня. Теперь сопоставляя эти промежутки, выясняем, что при (-4;0) и (
;4) уравнения имеют одинаковое количество корней.
Источник