Методы и средства регулирования свойств буровых промывочных жидкостей
Методы регулирования свойств БПЖ.Важнейшей инженерной задачей при строительстве нефтегазовых скважин является регулирование свойств БПЖ, поддержание их агрегативной и кинетической устойчивости в различных условиях бурения. Рост объемной температуры и давления промывочной жидкости с увеличением глубины скважины, поступление в нее солей и шлама приводят к дестабилизации раствора, сопровождающейся, прежде всего, повышением вязкости и показателя фильтрации. Эти два критерия стабилизации и являются предметом повышенного внимания специалистов по бурению скважин. Поскольку формы и причины дестабилизации БПЖ могут быть разнообразны, то и методы ее предупреждения достаточно разнообразны, но в общем виде они сводятся к трем:
1) снижение концентрации поступивших в раствор в процессе бурения частиц твердой фазы и ионов солей – метод разбавления, очистка;
2) повышение концентрации частиц дисперсной фазы – метод загущения;
3) воздействие на свойства дисперсионной среды, дисперсной фазы и на характер их взаимодействия между собой средствами реагентной обработки – метод химической обработки.
Метод химической обработкиявляется основным в регулировании свойств БПЖ.
Химобработка и ее задачи.Химическая обработка БПЖ в современной буровой технологии решает следующие самостоятельные задачи:
1) стабилизация и регулирование параметров стабилизации;
2) структурообразование и регулирование показателей структурно-механических свойств;
3) ингибирование и гидрофобизация;
4) улучшение смазочной способности и регулирование показателей антифрикционных, противоизносных и противозадирных свойств;
5) регулирование специальных свойств, таких как пенообразующих и пеногасящих, эмульгирующих и деэмульгирующих, антикоррозионных, кольматационных, поверхностно-активных, антисероводородных, комплексообразующих, термостойких и др. Для решения указанных задач химические реагенты должны отвечать следующим основным группам требований.
1. Экологическая и промышленная безопасность:
1) не загрязнять почву, воду, атмосферу непосредственно или в результате взаимодействия с окружающей средой;
2) не наносить вреда растительному и животному миру, в том числе человеку;
3) не накапливаться в природе, быть биоразлагаемыми.
2. Технико-технологические требования:
1) эффективно выполнять целевое назначение;
2) технологичность применения, т.е. легкость обслуживания, хранения, совместимость с исходным раствором и другими реагентами;
3) минимальный расход;
4) термо- и морозостойкость;
6) общее облагораживающее действие на промывочную жидкость.
3. Технико-экономические требования:
1) невысокая стоимость;
3) длительные сроки хранения и стабильность свойств;
4) минимальные адсорбционные потери.
Классификация химических реагентов. Классификационные признаки.Строительство современных нефтегазовых скважин характеризуется ростом объемов бурения стволов сложного профиля, с дальними отходами от вертикали, с проводкой горизонтальных участков в продуктивных пластах. Для управления свойствами БПЖ созданы сотни химических реагентов различного целевого назначения. Рынок химических реагентов в России в настоящее время представлен примерно на 70% продукцией отечественного производства и на 30% продукцией зарубежных фирм.
Существуют различные классификации химических реагентов, призванные облегчить выбор их для конкретных условий бурения. Рассмотрим классификацию реагентов, выполненную на основе следующих наиболее распространенных признаков:
1. Химический состав и строение молекул;
По химическому составу и строению молекул выделяют четыре группы реагентов:
1. Неорганические низкомолекулярные – вспомогательное назначение.
2. Органические высокомолекулярные с глобулярной формой макромолекул – понизители вязкости;
3. Органические высокомолекулярные с волокнистой (цепеобразной) формой макромолекул – понизители фильтрации;
4. Органические низкомолекулярные – ПАВ, спирты, кислоты и их соли, простые и сложные эфиры.
По солестойкости выделяют четыре группы реагентов:
1) солестойкие при содержании NaCl до 3%; 2) солестойкие при содержании NaCl от 3 до 10%; 3) солестойкие при содержании NaCl более 10% вплоть до насыщения; 4) солестойкие к солям жесткости (Ca 2+ и Mg 2+ ).
По термостойкости выделяют три группы реагентов:
1) термостойкие при температуре до 130 °С; 2) термостойкие при температуре 130 – 160 °С; 3) термостойкие при температуре выше 160 °С.
По назначению выделяют следующие группы реагентов:
1) понизители фильтрации; 2) регуляторы вязкости; 3) структурообразователи; 4) смазочные добавки; 5) ингибиторы; 6) гидрофобизаторы; 7) специального назначения: пенообразователи; пеногасители; эмульгаторы; деэмульгаторы; ингибиторы коррозии; антисероводородные добавки; бактерициды; связывающие Ca 2+ и Mg 2+ ; поставляющие Ca 2+ , K + , Al 3+ ; повышающие термостойкость; улучшающие проницаемость коллекторов; улучшающие буримость горных пород; комплексообразователи; флокулянты; коагулянты; наполнители; утяжелители.
Следует отметить некоторую условность разделения реагентов, поскольку многие из них многофункциональны и могут соответствовать одновременно нескольким признакам, группам.
Неорганические низкомолекулярные реагенты.Реагенты этой группы, как правило, многофункциональны, относительно недороги и достаточно широко распространены в связи с тем, что с их помощью в комплексе с реагентами других групп можно решать многие вопросы регулирования свойств БПЖ. Поэтому часто их относят к группе реагентов вспомогательного назначения.
В целом неорганические низкомолекулярные реагенты делят на четыре подгруппы:
1) щелочные: гидроокиси калия (KOH), натрия (NaOH) и кальция (Ca(OH)2); карбонаты натрия(Na2CO3) и калия(K2CO3), гидрокарбонат натрия (NaHCO3) – их часто называют кальцинированная сода, поташ и питьевая (пищевая) сода соответственно.
2) природные водорастворимые и практически нерастворимые соли: галит (NaCl), сильвин (KCl), бишофит (MgCl2·6H20), карналлит (KMgCl3·6H20), ангидрит, мел, известняк, доломит, барит и др. Используются в основном при получении минерализованных растворов для предупреждения кавернообразования в соленосных породах в разрезах скважин, для утяжеления растворов.
3) ионные ингибиторы– реагенты, поставляющие в промывочные жидкости катионы K, Ca 2+ , Al 3+ , Si 4+ , Cr 6+ : хлористый калий и содержащие его отходы промышленности типа хлор-калий электролит (ХКЭ), шламо-электролитная смесь (ШЭС) и МИН-1; кальцийсодержащие реагенты типа гашеной извести, гипса, ангидрита, алебастра, хлористого кальция; алюмокалиевые квасцы (K2SO4 · Al2(SO4)3), сернокислый алюминий (Al2(SO4)3), алюминат натрия (NaAlO2); силикаты натрия (Na2SiO3) и калия (Na2SiO3), хроматы и бихроматы калия и натрия.
4) полимероподобныенеорганические реагенты. К ним относятся конденсированные фосфаты (полифосфаты), полисиликаты и полихроматы.
Полифосфаты являются хорошими понизителями вязкости БПЖ, однако их термостойкость не превышает 90 – 100 °С. Другое назначение полифосфатов обусловлено их способностью связывать поливалентные катионы солей.
Полисиликаты в буровой технологии представлены метилсиликатом натрия (жидкое стекло) и боросиликатом. Последний хорошо себя зарекомендовал как понизитель вязкости глинистых и полимерглинистых растворов. Жидкое стекло в БПЖ применяется совместно с другими реагентами и улучшает термостойкость карбоксиметилцеллюлозы (КМЦ), способствует структурообразованию в глинистых и безглинистых промывочных жидкостях и, главное, проявляет ингибирующий эффект при одновременном снижении вязкости раствора при условии недопущения избытка реагента (0,5 – 1%).
Полихроматы представлены хроматами и бихроматами натрия и калия и являются соответствующими солями хромовой и бихромовой кислоты, являются токсичными, относятся к веществам первого класса опасности. Хроматы (Na2CrO4, K2CrO4) и бихроматы (Na2Cr2O7, K2Cr2O7) являются сильными окислителями, могут ускорять термоокислительную деструкцию КМЦ и ее производных. Поэтому при использовании последних для стабилизации промывочных жидкостей содержание хроматов должно быть не более сотых долей процента.
Полихроматы предназначены для повышения стабилизирующей способности защитных коллоидов, снижения рН, вязкости и повышения термостойкости промывочных растворов.
Органические высокомолекулярные реагенты с глобулярной формой макромолекул.Группу высокомолекулярных органических реагентов с глобулярной формой макромолекул делят на следующие подгруппы:
1) реагенты на основе гуматов; 2) реагенты на основе фенолов; 3) реагенты на основе лигнина.
Реагенты на основе гуматов. Применяются, в основном, углещелочной (УЩР) и торфощелочной (ТЩР) реагенты, благодаря их невысокой стоимости и доступности сырья. Натриевые формы реагентов УЩР и ТЩР проявляют сильное пептизирующее действие на глинистые породы, хорошо снижают вязкость и показатель фильтрации глинистых растворов, повышают рН среды и проявляют эмульгирующее воздействие на углеводороды.
Реагенты на основе фенолов включают в себя распространенные и высокоэффективные понизители вязкости растительного и синтетического происхождения. К ним относятся южно-американское квебрахо и другие природные танниды, продукты их сульфирования, а также конденсированные фенолы и близкие к ним по природе и действию конденсированные нафтолы (кортаны).
Реагенты на основе лигнина наиболее широко распространены как в зарубежной, так и в отечественной буровой технологии. Применяются реагенты на основе окисленного лигнина и лигносульфонатов.
К реагентам на основе окисленного лигнина относятся нитролигнин, хлорлигнин, сунил (сульфированный лигнин).
Реагенты на основе лигносульфонатов наиболее широко используются в буровой технологии в качестве понизителей вязкости, а зачастую и как понизители фильтрации. К ним относятся сульфит-спиртовая барда (ССБ), конденсированные формы (КССБ, КССБ-2М и др.), феррохромлигносульфонат, (ФХЛС), хромлигносульфонат (окзил).
Наибольшее распространение при бурении скважин имеют конденсированные формы лигносульфонатных реагентов.
Органические высокомолекулярные реагенты с волокнистой формой макромолекул.Волокнистая (цепеобразная) форма макромолекул характерна для полимеров – органических соединений с большой молекулярной массой, макромолекулы которых построены в виде связанных в цепочку одинаковых атомов, молекул или звеньев (мономер). Основное назначение этих реагентов – снижение показателя фильтрации промывочных жидкостей на водной основе.
В буровой технологии получили широкое распространение полимерные реагенты на основе полисахаридов и акрилатов. Углерод–углеродная связь более прочная, чем углеводная, поэтому реагенты акрилаты более термостойки, чем реагенты полисахариды.
Реагенты на основе полисахаридов представлены:
а) карбоксиметилцеллюлозой (КМЦ) и ее аналогами – карбоксиметилоксиэтилцеллюлозой (КМОЭЦ), полианионной целлюлозой (ПАЦ) и др.;
б) крахмальными реагентами: МК, ЭКР, КМК, ФИТО-РК и др.;
в) микробными полисахаридами (биополимерами): БП-92, Робус КК, Flo‑Vis, Kem‑X, Duo‑Vis и др.
Реагенты на основе акрилатов относятся к синтетическим полимерам, продуктам нефтехимии, первичным сырьем для производства которых является окись этилена. Широкое распространение получили полиакриламид (ПАА), гидролизованный полиакриламид (ГПАА), гидролизованный полиакрилонитрил (ГИПАН), метас, метакрил-14 (М-14) и др.
Органические низкомолекулярные реагенты. К ним относятся в основном соединения с дифильной структурой молекул – поверхностно-активные вещества (ПАВ). ПАВ находят широкое применение для регулирования различных целевых, специальных свойств промывочных жидкостей, например: 1) эмульгаторы и стабилизаторы для получения эмульсионных растворов – СЭТ-1, СМАД-1, Нефтенол НЗ, ОП-10 и др.; 2) пенообразователи – ОП-7, УФЭ8, КЧНР, ССБ, ТЭАС, МЛ-80 и др.; 3) смазочные добавки – ФК-2000, Сонбур-1011, СМАД-1М, глитал, САБ-1 и др.; 4) ингибиторы коррозии – ИКБ-2, Т-80, ИВВ-1, ФД-1 и др.; 5) пеногасители – оксали Т-66, Т-80, Т-92, ТЖЖ-50, ТБФ, Стеарокс-6 и др.
Источник
Принципы регулирования свойств промывочных жидкостей
Буровой раствор не может в одинаковой мере выполнять все функции. И главное не всегда это необходимо. Поэтому для конкретных условий бурения определяется набор основных функций бурового раствора и те свойства, которые обеспечат их выполнение. Задаче получения заданных свойств должны быть подчинены все работы по подбору рецептур (состава) раствора и их регулированию. При этом необходимо сохранить на приемлемом уровне остальные параметры промывочного агента.
Заданные свойства жидкости получают, подбирая состав и вид компонентов. Наибольшую сложность представляет получение дисперсных буровых растворов, так как здесь очень важное значение имеет степень дисперсности твердой фазы и характер ее взаимодействия с остальными компонентами. Изменяя степень дисперсности, можно при одном и том же составе бурового раствора в широких пределах варьировать некоторыми и в первую очередь реологическими свойствами промывочного агента.
Приготовление бурового раствора путем смешивания дисперсной фазы с дисперсионной средой в подавляющем большинстве случаев не обеспечивает требуемых свойств. Параметры такой дисперсной системы должны быть доведены до необходимых значений, что достигается применением средств регулирования свойств буровых растворов и в первую очередь добавок активно действующих веществ.
В процессе бурения буровой раствор взаимодействует с разбуриваемыми породами, пластовыми водами, подвергается воздействию механических нагрузок, температуры, давления, атмосферного воздуха, осадков. В нем происходят внутренние процессы, связанные с ослаблением электрических зарядов на частицах и старением составляющих компонентов. Все это приводит к ухудшению свойств раствора, он теряет способность выполнять необходимые функции. Поэтому в процессе бурения требуется восстанавливать и поддерживать его необходимые свойства. Нередко чередование пород в геологическом разрезе вызывает необходимость в изменении некоторых функций бурового раствора. Поэтому, если можно не заменять раствор, его свойства регулируют в процессе бурения на подходе к соответствующему интервалу.
Таким образом, необходимость в регулировании свойств бурового раствора возникает в следующих случаях:
1) при приготовлении — для получения раствора с заданными свойствами;
2) в процессе бурения — для поддержания требуемых функций;
3) в процессе бурения — для изменения параметров применительно к изменяющимся геологическим условиям.
Свойства бурового раствора регулируют:
· химической обработкой (путем введения специальных веществ — реагентов);
· физическими методами (разбавление, концентрирование, диспергация, утяжеление, введение наполнителей);
· физико-химическими методами (комбинация перечисленных методов).
Таким образом, чтобы буровые растворы в процессе бурения скважины выполняли требуемые функции, необходимо выбирать основные материалы для их приготовления, специально обрабатывать с помощью химических реагентов, вводить вещества, предназначенные для регулирования их свойств, и т. д.
Условия бурения скважин (глубина, диаметр, температура, порядок расположения и свойства разбуриваемых пород) весьма различны не только для разных месторождений, но и для отдельных участков одного месторождения. Поэтому буровые растворы также должны обладать различными свойствами не только на разных участках бурения, но и по мере углубления данной скважины. Чем лучше способность бурового раствора выполнять в данной скважине определенные функции, тем выше ее качество.
В процессе бурения на буровой раствор влияет выбуренная порода: частично путем распускания в жидкости, частично путем химического воздействия. Буровой раствор могут разбавлять пластовые воды. На нее воздействует высокая пластовая температура.
В процессе всех этих воздействий в буровом растворе происходят сложные физико-химические процессы, изменяющие ее свойства. В связи с этим необходимо контролировать способность раствора осуществлять необходимые функции путем измерения ее параметров в процессе бурения скважины и при необходимости восстанавливать их соответствующими способами.
Требования к методам измерения свойств буровых растворов:
— измеряемые параметры должны быть общепринятыми, обязательными для всех организаций и предприятий бурения, иначе невозможно создать рекомендации по регулированию параметров в разных районах;
— методы измерения параметров должны быть едиными и доступными для применения непосредственно у бурящихся скважин, так как может быть нарушена оперативность регулирования их, а следовательно, и технология бурения;
— принятые методы должны быть оперативными: продолжительность измерения параметров должна быть меньшей, чем время, в течение которого может измениться состояние бурящейся скважины, иначе в скважине могут возникнуть осложнения раньше, чем будет отмечено несоответствие параметров требованиям;
— в принятых методах необходимо предусматривать такие способы отбора проб циркулирующего раствора и такие способы измерения, которые обеспечат получение характеристик, соответствующих характеристикам жидкости, циркулирующей в скважине и осуществляющей необходимые функции; наиболее правильно измерять их при тех же температуре и давлении, которые соответствуют данной глубине скважины; строгое соответствие осуществить практически невозможно, поэтому процессы измерения параметров, отображающих отдельные функции или группы функций бурового раствора, условно моделируют поведение бурового раствора в скважине. Чем ближе эти модели к оригиналу, т. е. к условиям, в которых находится раствор в скважине, тем правильнее характеризуются его свойства.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник