Способ регистрации камера вильсона
© Куцева Н. В. │ Сайт «Элементарные частицы» разработан в рамках ВКР магистра
по направлению подготовки 44.04.01 «Педагогическое образование» профиля «Физическое образование».
ВГПУ – 2018 г.
Первым в истории прибором для регистрации следов (треков) заряженных частиц , позволяющим исследовать элементарные частицы слала Камера Вильсона, изобретённая в 1912 году шотландским физиком Ч. Вильсоном. Причём след заряженной частицы можно наблюдать непосредственно или сфотографировать.
Внешний вид первой камеры Вильсона
Действие камеры Вильсона основано на явлении конденсации перенасыщенного пара, т. е. на образовании мелких капелек жидкости на каких-либо центрах конденсации, например на ионах, образующихся вдоль заряженной частицы.
Схема устройства камеры Вильсона
Камера Вильсона представляет собой геометрически стеклянный закрытый сосуд (на рисунке камера показана в разрезе) со стеклянной крышкой, внутри которого может перемещаться поршень. На дне камеры находится чёрная ткань, увлажнённая смесью воды с этиловым спиртом, благодаря чему воздух в цилиндре очень близок к насыщению. При резком опускании поршня, вызванным уменьшением под ним давления, пар в камере адиабатно расширяется, его внутренняя энергия уменьшается. В результате чего пар охлаждается и становится перенасыщенным. Находясь в крайне неустойчивом состоянии, пары жидкости будут легко конденсироваться на таких центрах конденсации, как ионы, образующиеся в камере при пролёте в ней элементарной частицы. Если изучаемые частицы проникают в камеру через тонкое окошко (иногда источник частиц помещают внутри камеры) сразу после расширения пара, то на их пути появляются капельки воды (их размер порядка ), которые и образуют видимый след пролетавших частиц – треки. Стоит также отметить, что при расширении пара центрами конденсации могут служить частички пыли, что вызвало бы появление тумана. Однако в камере Вильсона этого не происходит, так как воздух в ней предварительно отчищают.
Освещая треки сбоку сильной лампой, их можно сфотографировать через прозрачную крышку камеры. Но следы частиц в камере существуют недолго, так как воздух нагревается, получая тепло от стенок камеры, и капли испаряются.
Для получения новых следов, необходимо восстановить чувствительность камеры: удалить имеющиеся ионы с помощью электрического поля, сжать воздух поршнем, выждать, пока воздух нагревшийся в камере при сжатии, охладиться, и произвести новое расширение. Таким образом, камера Вильсона работает в циклическом режиме. Время восстановления рабочего режима зависит от размера камеры и может быть от нескольких секунд до десятков минут.
Информация, которую дают треки в камере Вильсона, значительно богаче той, которую могут дать счётчики. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека – её скорость. Чем длиннее трек частицы, тем больше её энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше её скорость. Частицы с большим зарядом оставляют трек большей толщины.
Фотографии треков заряженных частиц в камере Вильсона
Для просмотра фотографий кликните по их миниатюрным изображениям
Если камеру Вильсона поместить в магнитное поле, то сила, действующая со стороны этого поля (сила Лоренца) на заряженную частицу, будет искривлять траекторию частицы, не изменяя модуля её скорости. Впервые такие треки (а именно треки α-частиц ) наблюдал наш советский академик П. Л. Капица в 1923 году. В 1924 году искревление треков электронов и других лёгких частиц наблюдал и другой наш советский академик Д. В. Скобелицын.
По направлению изгиба можно судить о знаке заряда частицы. Причём чем больше заряд частицы, тем и чем меньше её масса, тем трек имеет большую кривизну. По заряду частицы и кривизне её трека можно найти массу частицы. Измерив радиус траектории, можно определить скорость и энергию частицы, если известны её масса и заряд.
За изобретение первой визуальной камеры регистрации элементарных частиц в 1927 году Ч. Вильсону была присуждена Нобелевская премия.
Камера Вильсона сыграла важную роль в изучении строения вещества. На протяжении нескольких десятилетий она была практически единственным визуальным прибором регистрации и исследования ядерных и космических излучений:
● В 1930 году советскими физиками Л. В. Мысовским и Р. А. Эйхельбергером по проведению опытов с рубидием и камерой Вильсона было зарегистрировано испускание β-частиц. Позже была открыта естественная радиоактивность изотопа .
● В 1934 году Л. В. Мысовским и Р. А. Эйхельбергером с помощью камеры Вильсона были произведен ы эксперименты , в ходе которых было доказано присутствие нейтронов в составе космического излучения.
● В 1934 году исследование космического излучения американском физиком К. Андерсеном позволили обнаружить первую античастицу – позитрон . А в 1937 году К. Андерсону вместе с другим американским физиком, С. Неддермайером, тем же способом удалось открыть ещё один тип элементарных частиц – мюоны (μ-мезоны).
● В 1947 году английским физиком С. Пауэллом также при исследовании космического излучения были зарегистрированы пионы (π-мезоны) и т. д.
В последние годы камера Вильсона уступила своё место пузырьковой и искровой камерам.
Источник
Способ регистрации камера вильсона
«Физика — 11 класс»
Выражения атомное ядро и элементарные частицы уже неоднократно упоминались.
Атом состоит из ядра и электронов.
Само атомное ядро состоит из элементарных частиц, нейтронов и протонов.
Раздел физики, в котором исследуется строение и превращение атомных ядер, называется ядерной физикой.
Первоначально разделения на ядерную физику и физику элементарных частиц не было.
С многообразием мира элементарных частиц физики столкнулись при изучении ядерных процессов.
Выделение физики элементарных частиц в самостоятельную область исследования произошло около 1950 г.
Сегодня существуют два самостоятельных раздела физики: содержание одного из них составляет изучение атомных ядер, а содержание другого — изучение природы, свойств и взаимных превращений элементарных частиц.
Благодаря устройствам для регистрации и изучения столкновений и взаимных превращений ядер и элементарных частиц возникла и начала развиваться физика атомного ядра и элементарных частиц.
Принцип действия приборов для регистрации элементарных частиц
Регистрирующий прибор — это более или менее сложная макроскопическая система, которая может находиться в неустойчивом состоянии.
При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние.
Этот процесс и позволяет регистрировать частицу.
В настоящее время используется множество различных методов регистрации частиц.
В зависимости от целей эксперимента и условий, в которых он проводится, применяются те или иные регистрирующие устройства, отличающиеся друг от друга по основным характеристикам.
Газоразрядный счетчик Гейгера
Счетчик Гейгера — один из важнейших приборов для автоматического подсчета частиц.
Счетчик состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод).
Трубка заполняется газом, обычно аргоном.
Действие счетчика основано на ударной ионизации.
Заряженная частица (электрон, α-частица и т. д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны.
Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергий, при которых начинается ударная ионизация.
Возникает лавина ионов, и ток через счетчик резко возрастает.
При этом на нагрузочном резисторе R образуется импульс напряжения, который подается в регистрирующее устройство.
Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный разряд необходимо погасить.
Это происходит автоматически.
Так как в момент появления импульса тока падение напряжения на нагрузочном резисторе R велико, то напряжение между анодом и катодом резко уменьшается — настолько, что разряд прекращается.
Счетчик Гейгера применяется в основном для регистрации электронов и γ-квантов (фотонов большой энергии).
В настоящее время созданы счетчики, работающие на иных принципах.
Камера Вильсона
Счетчики позволяют лишь регистрировать факт прохождения через них частицы и фиксировать некоторые ее характеристики.
В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать.
Принцип действия камеры Вильсона основан на конденсации перенасыщенного пара на ионах с образованием капелек воды.
Эти ионы создает вдоль своей траектории движущаяся заряженная частица.
Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению.
При резком опускании поршня, вызванном уменьшением давления под ним, пар в камере адиабатно расширяется.
Вследствие этого происходит охлаждение, и пар становится перенасыщенным.
Это — неустойчивое состояние пара: он легко конденсируется, если в сосуде появляются центры конденсации.
Центрами конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица.
Если частица проникает в камеру сразу после расширения пара, то на ее пути появляются капельки воды.
Эти капельки образуют видимый след пролетевшей частицы — трек.
Затем камера возвращается в исходное состояние, и ионы удаляются электрическим полем.
В зависимости от размеров камеры время восстановления рабочего режима варьируется от нескольких секунд до десятков минут.
Информация, которую дают треки в камере Вильсона, значительно богаче той, которую могут дать счетчики.
По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека — ее скорость.
Чем длиннее трек частицы, тем больше ее энергия.
А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость.
Частицы с большим зарядом оставляют трек большей толщины.
Советские физики П. Л. Капица и Д. В. Скобельцын предложили помещать камеру Вильсона в однородное магнитное поле.
Магнитное поле действует на движущуюся заряженную частицу с определенной силой (силой Лоренца).
Эта сила искривляет траекторию частицы, не изменяя модуля ее скорости.
Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса.
По кривизне трека можно определить отношение заряда частицы к ее массе.
Если известна одна из этих величин, то можно вычислить другую.
Например, по заряду частицы и кривизне ее трека можно найти массу частицы.
Пузырьковая камера
В 1952 г. американским ученым Д. Глейзером было предложено использовать для обнаружения треков частиц перегретую жидкость.
В такой жидкости на ионах (центрах парообразования), образующихся при движении быстрой заряженной частицы, появляются пузырьки пара, дающие видимый трек.
Камеры данного типа были названы пузырьковыми.
В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости несколько выше температуры кипения при атмосферном давлении.
При резком понижении давления жидкость оказывается перегретой, и в течение небольшого времени она будет находиться в неустойчивом состоянии.
Заряженные частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара.
В качестве жидкости используются главным образом жидкий водород и пропан.
Длительность рабочего цикла пузырьковой камеры невелика — около 0,1 с.
Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества.
Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере.
Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.
Треки в камере Вильсона и пузырьковой камере — один из главных источников информации о поведении и свойствах частиц.
Метод толстослойных фотоэмульсий
Для регистрации частиц наряду с камерами Вильсона и пузырьковыми камерами применяются толстослойные фотоэмульсии.
Ионизирующее действие быстрых заряженных частиц на эмульсию фотопластинки позволило французскому физику А. Беккерелю открыть в 1896 г. радиоактивность.
Метод фотоэмульсии был развит советскими физиками Л. В. Мысовским, Г. Б. Ждановым и др.
Фотоэмульсия содержит большое количество микроскопических кристалликов бромида серебра.
Быстрая заряженная частица, пронизывая кристаллик, отрывает электроны от отдельных атомов брома.
Цепочка таких кристалликов образует скрытое изображение.
При проявлении в этих кристалликах восстанавливается металлическое серебро и цепочка зерен серебра образует трек частицы.
По длине и толщине трека можно оценить энергию и массу частицы.
Из-за большой плотности фотоэмульсии треки получаются очень короткими (порядка 10 -3 см для α-частиц, испускаемых радиоактивными элементами), но при фотографировании их можно увеличить.
Преимущество фотоэмульсий в том, что время экспозиции может быть сколь угодно большим.
Это позволяет регистрировать редкие явления.
Важно и то, что благодаря большой тормозящей способности фотоэмульсий увеличивается число наблюдаемых интересных реакций между частицами и ядрами.
Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин
Физика атомного ядра. Физика, учебник для 11 класса — Класс!ная физика
Источник