Способ проверки решения задач
� 5. Проверка решения задачи
Проверить решение задачи — это значит установить, правильно она решена или неправильно.
В начальных классах используются следующие способы проверки:
1. Прикидка ответа (установление соответствия искомого числа области своих значений).
Применение этого способа состоит в том, что до решения задачи устанавливается область значении искомого числа, т.е. приблизительно в каких границах оно может быть по сравнению с данными задачи. Если после решения получают большие расхождения, значит задача решена неверно; если же эти расхождения незначительны — то, возможно, задача решена верно.
З а д а ч а. В мешке было 45 кг моркови. 3 дня из мешка брали моркови поровну, после чего в нем осталось 33 кг. Сколько килограммов моркови брали из мешка каждый день?
До решения выясняем: было 45 кг, осталось 33 кг. Значит, за три дня взяли меньше 33 кг, т.к. разность 45 и 33 меньше этого числа. Значит, в ответе число у нас должно быть меньше 33 кг. Решив задачу, в ответе получим 4 кг, которое меньше 33 кг. Наше решение возможно верное. Если бы мы получили 35 кг, значит задача решена неверно. Надо проверить еще раз или другим способом.
Прикидка чаще всего используется с другими видами проверки, которые дают однозначный ответ о правильности решения. Она вводится уже в 1 классе.
2. Установление соответствия между результатом решения и условием задачи.
При проверке этим способом число, полученное в ответе, «подставляют» в задачу и выполняют действия. Если получатся числа, данные в условии задачи, то можно считать, что задача решена верно.
З а д а ч а. В первых, вторых и третьих классах школы учатся всего 360 учащихся. В первых и вторых классах было 210 учащихся, во вторых и третьих классах -270 учащихся. Сколько учеников было в первых классах? во вторых классах? в третьих классах?
Решив задачу, находим: в первых — 90, во вторых — 120 и в третьих 150 учащихся. Проверим условие задачи по полученным числам: во всех классах 90+120+150=360 (учащихся); в первых и вторых классах 90+120=210 (учащихся); во вторых и третьих классах 120+150=270 (учащихся). Полученные числа совпадают с данными, значит можно считать, что задача решена верно. Этот способ проверки используется, начиная со 2 класса.
3. Решение задачи другим способом.
Если задачу можно решить различными способами, то получение одинаковых ответов подтверждает, что задача решена правильно.
З а д а ч а. Из двух поселков, расстояние между которыми 260 км, выехали одновременно навстречу друг другу два мотоциклиста и встретились через 2 часа. Скорость одного из них 60 км/ч. С какой скоростью ехал другой мотоциклист?
Источник
Способы проверки решения арифметических задач и вычислений
методическая разработка по математике на тему
Для эффективности усвоения приёмов проверки решения задач и вычислений разработаны памятки, содержащие систему операций.
Скачать:
Вложение | Размер |
---|---|
sposoby_proverki_resheniya_zadach.doc | 95.5 КБ |
Предварительный просмотр:
Акимова Ольга Ивановна,
учитель ГБОУ школы №115 Выборгского района г. Санкт-Петербурга
Способы проверки решения арифметических задач и вычислений
Основное содержание начального курса математики составляют устные и письменные вычисления и решение арифметических задач. Умения вычислять и решать задачи имеют не только большое практическое значение, но и являются прекрасным средством углубления приобретённых детьми на уроках математики теоретических знаний, служат для развития творческого мышления учащихся, способствуют развитию у них сообразительности, внимания, гибкости и умственной самостоятельности.
При выполнении вычислений и решении задач школьники допускают большое количество ошибок, исправление которых часто бывает, затруднено не только и не столько непониманием учеником природы ошибок, сколько неумением их обнаружить.
Программа обучения математике в начальной школе предполагает знакомство с некоторыми видами проверки вычислений и арифметических задач, но проверка выполняется , если такое задание сформулировано в учебнике или данный вопрос в это время изучается специально. Систематическая проверка ,как правило, в школе не проводится. Решение задач и примеров заканчивается получением результата. Следствием этого является то, что дети не в состоянии проконтролировать свою деятельность, часто не замечают ошибок в ходе и результате решения.
Организуя проверку решения задачи, учитель должен помнить, что не все способы применимы к любой задаче. В методической литературе выделяются следующие способы проверки арифметических задач:
- Составление и решение обратной задачи
- Решение задачи другим способом
- Прикидка результата
Из перечисленных способов особое внимание уделяется составлению и решению обратной задачи. Этот приём достаточно универсален, так как составить обратную задачу можно к любой исходной. Лучше этот приём использовать, начиная со 2 класса, так как при составлении обратной задачи может получиться задача труднее, чем исходная.
Решение задачи другим способом — приём достаточно сложный, так как является творческим видом работы и не все учащиеся могут найти даже один способ решения задачи. Существуют приёмы, которые позволяют отыскать иной способ решения задачи: построение иной модели задачи, чем та, которая была использована; дополнение условия задачи сведениями, не влияющими на результат решения; представление практического разрешения ситуации, описанной в задаче. Эти приёмы представляются ученику в виде учебной задачи.
Самым элементарным способом проверки является прикидка – установление границ искомого числа. Предполагается вводить его уже в первом классе. Прикидка обычно проводится перед решением задачи, устанавливаются границы значений искомого числа. После получения ответа проверяют, удовлетворяет ли он выбранным границам. В случае несоответствия делают вывод о неправильности результата.
Применять этот способ можно как для простых, так и для составных задач. Данный способ является необходимой частью анализа задач в косвенной форме, в связи с тем, что еще до решения задачи нужно выяснить, какое число получится в ответе – больше или меньше данного.
Приёмы проверки решения арифметических задач легко переносятся на вычисления и выполняются с использованием тех же алгоритмов.
Умение проверять решение задач и вычисления способствует выработке потребности самоконтроля у младших школьников, оно не только порождает уверенность в правильности решения, но и позволяет глубже понять математическое содержание данных видов упражнений, осознать связи между этими упражнениями, формирует умение рассуждать, активизирует мыслительную деятельность детей.
Для эффективности усвоения приёмов проверки решения задач и вычислений созданы памятки, содержащие систему операций.
Памятка для проверки решения задачи способом составления и решения обратной задачи.
- Решить прямую задачу
- Подставить в текст задачи полученное число
- Выбрать из данных задачи новое неизвестное число
- Сформулировать новую задачу
- Решить её
- Сравнить полученное число с тем, которое было выбрано в качестве неизвестного
- Сделать вывод о правильности решения задачи
Памятка для проверки вычислений способом составления и решения обратного примера
- Реши исходный пример
- Подставь в пример найденное число
- Выбрать из данных примера новое неизвестное число
- Запиши новый пример
- Реши пример
- Сравнить полученное число с тем, которое было выбрано в качестве неизвестного
- Сделать вывод о правильности решения примера
Памятка для проверки решения задачи способом прикидки результата
- Прочитай задачу
- Выдели данное и искомое
- Подумай, с каким из чисел можно сравнить искомое
- Подумай, какое число должно получиться в ответе, больше или меньше, чем данные
- Реши задачу
- Сравни полученный ответ с данным задачи
- Сделать вывод о правильности решения задачи
Памятка для проверки вычислений способом прикидки результата
- Прочитай исходный пример
- Выдели данные и искомое
- Подумай, с каким из чисел можно сравнить искомое
- Подумай, какое число должно получиться в ответе, больше или меньше, чем данные
- Реши пример
- Сравни полученный ответ с данным примера
- Сделать вывод о правильности вычисления
Источник
Способы проверки правильности решения задачи в начальных классах
Проверка решения задачи — один из важных этапов работы над задачей.
Цель проверки — установить, соответствует ли процесс и результат решения образцу правильного решения. В начальном курсе математики могут быть использованы следующие способы проверки решения текстовых задач (Бантова М.И., Царева С.Е. и др.).
1. Прикидка (прогнозирование результата, установление границ ответа на вопрос задачи и последующее сравнение хода решения с прогнозом) — при несоответствии прогнозу — решение неверно, при соответствии — может быть верно, а может неверно.
2. Установление соответствия между результатом решения и условием задачи (введение в текст задачи вместе вопроса ответа на него, получение всех возможных следствий из полученного текста, сопоставление результатов друг с другом и с информацией, содержащейся в тексте) — если обнаружено противоречие, задача решена неверно, и наоборот, однако правильность хода решения не устанавливается.
3. Решение другим методом или способом (результаты должны совпасть)- правильность хода решения не устанавливается.
4. Составление и решение обратной задачи (в результат решения должно быть получено данное прямой задачи) — правильность хода решения не устанавливается.
5. Сравнением с правильным решением — с образцом хода и результата решения возможно установление правильности как хода, так и результат решения).
6. Повторное решение тем же методом и способом (возможно установление правильности как хода, так и результата решения).
7. Решение задач «с малыми числами» с последующей проверкой вычислений (возможно установление правильности как хода, так и результат решения).
8. Решение задач с упрощенными отношениями и зависимостями с последующим восстановлением отношений и зависимостей, данных в задаче (возможно установление правильности как хода, так и результат решения).
9. Обоснование каждого шага решения через соотнесение с более общими теоретическими положениями (возможно установление правильности как хода, так и результат решения).
10. Определение смысла составленных в процессе решения выражений (если все выражения имеют смысл и смысл последнего таков, что позволяет ответить на вопрос задачи, то выражения составлены верно и после проверки правильности нахождения значений выражений, можно утверждать, что ход и результат решения верны) — возможно установление правильности как хода, так и результат решения.
Этапы обучения проверке (для всех способов):
I. Подготовительная работа к введению приема:
Цель: сформировать умения, необходимые для осуществления приема проверки.
II. Проверка решения под руководством учителя. Учитель после неверно решенной задачи проговаривает способ проверки (в неявном виде).
III. Усвоение способа проверки и самостоятельное его использование. Цель: запоминание детьми последовательности действий для проверки и формирование умения использовать самостоятельно способ проверки.
Овладение данными способами проверки решения задачи способствует в первую очередь развитию одного из важнейших компонентов учебной деятельности – действия самоконтроля. В ходе проверки развиваются три его вида – прогнозирующий, процессуальный (пошаговый) и итоговый.
Поскольку проверка задачи осуществляется после решения задачи, то приемы проверки правильности решения задачи можно отнести и кэтапу работы над задачей после её решения.
3. Какой из приемов проверки не всегда можно применить в начальных классах?
Источник
Семинар ДООМ Способы проверки текстовых задач
Арешина Зинаида Стефановна, 205
Уважаемые коллеги, я хочу поделиться своим опытом. При самостоятельном решении текстовых задач я учу детей умению проверять правильность полученного ответа. С некоторыми способами проверки я предлагаю познакомиться. Обычно ответ задачи проверяется одним из трёх способов:
1. Проверка по условию и смыслу задачи.В этом случае последовательно проверяется соответствие ответа всем условиям задачи.
«Пшеницу пересыпали из ларя в 3 мешка. В первый мешок вошло 5/18 всей пшеницы, во второй – 1/3 всей пшеницы, а в третий – на 10 кг больше, чем во второй. Сколько килограмм пшеницы было в ларе» При решении задачи ученик получил ответ: «В ларе было 180 килограммов» Проверим, соответствует ли ответ всем условиям задачи. Если в ларе было 180 кг пшеницы, то в первый мешок пересыпали 180*(5/18)=50 (кг), во второй – 180*(1/3) = 60 (кг), в третий – 60+10 =70 (кг). Всего 50+60+70=180 (кг), что соответствует условию задачи. Значит, задача решена правильно.
«Два велосипедиста отправились одновременно из пунктов А и В, расстояние между которыми 64 километра, навстречу друг другу. Через 2ч 20 мин им до встречи остался 1 км. А ещё через 40 мин первому осталось пройти до В на 9 км больше, чем второму до А. Найти скорость велосипедистов.» Решив задачу, ученик определил, что скорость первого велосипедиста 12 км/ч, а второго – 15 км/ч. Проверка:
1) Первый велосипедист за 2ч 20мин пройдёт расстояние 12*2⅓=28 (км), а второй – 15*21/3 =35 (км). Следовательно, до встречи им оставалось пройти 64-(28+35)=1(км).
2) Ещё через 40 мин, т.е. всего через 3ч расстояние, пройденное первым велосипедистом, будет равно 12*3=36 (км), а вторым – 15*3=45 (км).
3) До пункта В первому оставалось пройти 64-36=28 (км), второму до пункта А – 64-45=19 (км). То есть первому оставалось пройти на 28-19=9 (км) больше, чем второму, что соответствует условию задачи.
Задача решена правильно. Сознание этого вызывает у ученика удовлетворение учёбой и определённый эмоциональный подъём.
2. Составление и решение обратной задачи. Проверка ответа составлением и решением обратной задачи состоит в том, что в условие задачи вводится полученный ответ и исключается одно (или несколько) из известных (данных) чисел, которое в условии первой задачи становится искомым. Такая задача и называется обратной данной. Если после решения обратной задачи полученное в ответе число равняется числу, исключённому из условия основной задачи, то считается, что основная задача решена правильно.
«Бабушка подала в кассу магазина 300 руб. в уплату за 4 банки консервов по 52 рубля за банку. Сколько сдачи она должна получить?» Решив задачу, ученик определил, что бабушка должна получить сдачи 92 рубля. Для проверки ответа составим задачу обратную. Для уплаты за 4 банки консервов бабушка подала 300 рублей и получила сдачи 92 руб. Сколько стоит одна банка консервов?» Решив, получим, что одна банка стоит 52 руб., это соответствует условию задачи, значит, первая задача решена правильно.
«После снижения цен на 12% сапоги стоят 792 руб. Сколько стоили сапоги до снижения цен?» Очень часто такого типа задачи дети решают с ошибкой и получают ответ 887,04 руб. Легко убедиться, что это не так. Проверка. 1) Сколько рублей составила скидка? А=(887,04*12)/100
2) За сколько рублей должны продаваться сапоги после снижения цен?
3) 887,04-106,44=780,6 руб., но это не соответствует условию задачи, значит, задача решена неправильно.
Проверка свелась к решению такой задачи: «До снижения цен сапоги стоили 887,04 руб. Цены снизили на 12%. Сколько стоят сапоги после снижения цен?», а это и есть задача, обратная исходной.
Теперь надо найти ошибку и исправить её. В случае успеха учитель не снизит оценку за работу, а наоборот похвалит за настойчивость. Если же ученик не сумеет самостоятельное найти правильное решение, учитель разъяснит, где ошибка.
Умение проверять правильность полученного ответа решением обратной задачи весьма полезно и пригодится ученикам на протяжении всей учёбы, а также в будущей практической деятельности.
При изучении темы «интеграл» в 11 классе правильность нахождения первообразной функции рекомендуется проверять операцией, обратной интегрированию – дифференцированием.
3. Решение задачи другим способом. Иногда в целях самоконтроля полезно решать задачу другим способом. Совпадение ответов даёт основание утверждать, что задача решена правильно.
Пример (для устного счёта в 5 или 6 классе)
«Токарь и его ученик изготовили за 6 часов 156 деталей. Токарь делал каждый час 15 деталей. Сколько деталей за 1 час делал его ученик».
I способ: (156-15*6):6=11 деталей.
II способ: 156:6-15=11 деталей.
1 Математика 5-6 кл. М. «Просвещение» 2005 г,Виленкин Н.Я,Жохов В.И, В.И,Чесноков А.С,Шварцбурд С.И.
2 «Где ошибка» Тула 1976г, Чуканцов С.М. «Приокское изд.»
3 Эрдниев П.М. «Методика упражнений по арифметике и алгебре.» М. «Просвещение» 1965 г.
4 «Дидактический материал по алгебре для VII классов» А.С.Ершова,В.В.Голобородько,А.С.Ершова «ИЛЕКСА» «ГИМНАЗИЯ»МОСКВА-ХАРЬКОВ 2000г.
Источник