Способ проникновения через биологические барьеры

Транспорт лекарственных средств через клеточную мембрану и биологические барьеры

Содержание

Транспорт лекарственных средств через клеточную мембрану и другие биологические барьеры [ править | править код ]

На всех этапах своего пребывания в организме — всасывания, распределения, метаболизма, экскреции — лекарственные средства проникают через клеточные мембраны. Поэтому очень важно понимать механизм мембранного транспорта, знать физико-химические свойства препарата и самой мембраны, от которых этот транспорт зависит. Так, решающее значение имеют размеры и форма молекулы лекарственного средства, степень ионизации, растворимость в жирах и связывание с белками тканей.

Клеточная мембрана — наиболее универсальный биологический барьер, который приходится преодолевать лекарственным средствам. Он входит в состав других биологических барьеров, таких, как слизистая кишечника, состоящая из одного слоя клеток, или кожа, состоящая из нескольких таких слоев. В большинстве случаев лекарственные средства переносятся через клетки, а не между ними, поэтому механизм проникновения через столь разные по строению барьеры во многом сходен.

Клеточная мембрана [ править | править код ]

Клеточная мембрана представляет собой двойной слой амфифильных липидов, гидрофобные углеводородные хвосты которых обращены внутрь, а гидрофильные головки — наружу. Мембраны разных клеток различаются по липидному составу. Перемещаясь вдоль поверхности, липидные молекулы придают мембране текучесть и эластичность. Кроме того, мембраны обладают высоким электрическим сопротивлением и плохо проницаемы для полярных молекул. Встроенные в двойной липидный слой мембранные белки выполняют функции рецепторов, ионных каналов и переносчиков, участвуя в восприятии и передаче химических и электрических сигналов. Эти белки служат мишенями для лекарственных средств.

Проникновение лекарственных средств через биологические барьеры [ править | править код ]

При преодолении биологических барьеров лекарственные средства могут проходить как сквозь клетки, так и между ними. Между эндотелиальными клетками большинства капилляров препараты транспортируются с током воды, происходящим путем фильтрации по градиенту гидростатического давления. Такой вид транспорта доступен только свободным лекарственным средствам, так как молекулы белков, с которыми они связаны, слишком велики. Транспорт веществ через межклеточные контакты осуществляется довольно легко. В капиллярах он зависит только от интенсивности кровотока (см. ниже). Этот вид транспорта играет важную роль в проникновении веществ через почечный фильтрационный барьер. В некоторых органах и тканях (капилляры ЦНС, многие эпителиальные ткани) клетки связаны плотными контактами, транспорт через которые ограничен (см. ниже). При прохождении сквозь клетки лекарственные средства должны переноситься через клеточную мембрану. Последняя хорошо проницаема для воды, которая проникает через мембрану путем диффузии по градиенту осмотического давления. Вместе с водой через мембрану могут проходить небольшие (молекулярная масса не более 100—200), растворимые в воде молекулы лекарственных средств. Большинство липофильных препаратов с высоким молекулярным весом транспортируются путем активного или пассивного транспорта.

Простая диффузия [ править | править код ]

Многие липофильные лекарственные средства проходят через клеточную мембрану посредством простой диффузии (разновидность пассивного транспорта) по градиенту концентрации. Скорость простой диффузии прямо пропорциональна величине трансмембранного концентрационного градиента, коэффициенту распределения препарата между липидной и водной фазами и площади диффузионной поверхности. Чем больше коэффициент распределения, тем выше концентрация препарата в мембране и тем выше скорость диффузии. В случае неионизированных веществ по достижении стационарного состояния концентрации свободного вещества по обе стороны мембраны выравниваются. Трансмембранное распределение ионизированных веществ зависит от электрохимических градиентов для ионов и от градиента pH между внутри- и внеклеточным пространством, так как величина pH влияет на степень ионизации.

Влияние pH на диффузию слабых электролитов [ править | править код ]

Большинство лекарственных средств представляют собой слабые кислоты или слабые основания, которые могут находиться в водном растворе как в ионизированной, так и в неионизированной форме. Неионизированные молекулы обычно липофильны и легко проходят через мембрану (неионная диффузия), в отличие от плохо растворимых в жирах ионизированных молекул.

Трансмембранное распределение слабых электролитов зависит от показателя кислотной диссоциации pКа (рКа соответствует pH, при котором половина всех молекул слабой кислоты или слабого основания ионизирована) и градиента pH. На рис. 1.2 представлено распределение слабой кислоты (рКа 4,4) между плазмой (pH 7,4) и желудочным соком (pH 1,4). Слизистая желудка выполняет функцию липидного барьера, проницаемого только для неионизированных, липофильных молекул. Соотношение неионизированной и ионизированной форм препарата легко вычислить с помощью уравнения Гендерсона—Гассельбальха. В плазме это соотношение равно 1:1000, а в желудочном соке — 1:0,001 (на рисунке эти данные приведены в квадратных скобках, а смещение равновесия в сторону ионизированной или неионизированной Формы указано толстыми горизонтальными стпелками). Таким образом, в стационарном состоянии соотношение концентраций препарата в плазме и желудочном соке составит 1000:1. Для слабого основания с рКа 4,4 указанные соотношения обратные, и равновесие между ионизированной и неионизированной формами также смещено в обратную сторону. Итак, в стационарном состоянии слабая кислота накапливается преимущественно с той стороны мембраны, где среда более щелочная, а слабое основание — с той стороны, где среда более кислая (так называемая ионная ловушка). Эти закономерности во многом определяют всасывание и экскрецию лекарственных средств (см. ниже). Разность концентраций слабого электролита по обе стороны биологических барьеров устанавливается без затрат энергии, за счет избирательной проницаемости мембраны для неионизированных молекул и трансмембранного градиента pH. Последний, впрочем, создается активным транспортом ионов.

Читайте также:  Способы снижения переменных затрат

Облегченная диффузия и активный транспорт [ править | править код ]

Хотя наиболее распространенный механизм мембранного транспорта лекарственных средств — простая диффузия, препараты могут проходить через клеточную мембрану с участием белков-переносчиков — путем облегченной диффузии или активного транспорта. Облегченная диффузия (разновидность пассивного транспорта) идет по концентрационному или электрохимическому градиенту без затрат энергии, но, в отличие от простой диффузии, осуществляется с помощью белка-переносчика. Активный транспорт идет против концентрационного либо электрохимического градиента и требует затрат энергии. Облегченная диффузия и активный транспорт характеризуются насыщением, специфичностью и конкурентным ингибированием. Белки-переносчики участвуют в переносе через мембрану эндогенных веществ, скорость простой диффузии которых слишком мала, и могут обладать высокой специфичностью к определенной конформации молекулы лекарственного вещества. Кроме того, с помощью белков-переносчиков из клетки выводятся токсичные вещества.

От локализации переносчика в той или иной части клетки часто зависит направление переноса (в клетку или из нее), что во многих случаях обеспечивает направленный транспорт лекарственных средств через клеточные слои. Так, переносчики в базолатеральной мембране гепатоцитов транспортируют желчные кислоты и амфифильные органические ионы в клетку, а системы активного транспорта в апикальной мембране — из клетки в желчь. Сходные механизмы действуют в кишечнике и почечных канальцах. Во всех этих органах, а также в эндотелии капилляров головного мозга присутствует Р-гликопротеид — мембранный белок-переносчик, отвечающий за выведение лекарственных средств из клетки. Этот белок кодируется геном ABCВ1 (старое название MDR- 1) и обусловливает устойчивость опухолевых клеток к химиотерапии (гл. 52). В кишечнике Р-гликопротеид транспортирует лекарственные средства из энтеропита обратно в просвет кишечника, уменьшая их всасывание.

Источник

Пять механизмов проникновения ЛС через биомембраны (биобарьеры).

1. Пассивная диффузия — ЛС проникают через биомембраны по градиенту (пере­паду, разнице)ихконцентраций: со стороны с более высокой концентрацией в сто­рону с меньшей, до тех пор, пока концентрация ЛС по обе стороны биомембраны не сравняется.

2. Облегчённая диффузия — транспорт ЛС через биомембраны с участием специфи­ческих эндогенных переносчиков (молекул-носителей). В этом случае перенос ЛС осуществляется также пассивно (по градиенту концентрации), но скорость их переноса выше.

3. Активный транспорт – транспорт ЛС против градиента концентрации за счёт молекул – носителей с использованием энергии, например от расщепления аденозинтрифос­форной кислоты (АТФ) специальными ферментами — транспортнымиАТФазами.

4. Фильтрация через поры – прохождение ЛС с малой молекулярной массой через поры в биомембране.

5. Пиноцитоз (корпускулярная абсорбцияили пенсорбция) – транспорт крупных молекул ЛС путём их «охватывания» самой клеточной мембраной (аналогично фагоци­тозу) с последующим перемещением молекул внутрь клетки.

В организме ЛС проходят через следующие этапы фармакокинетики: абсорбцию, метаболизм, связывание с белками крови, распределение по организму и выведение из него. Проходимость этих этапов у ЛС в основном зависит от жироводорастворимости молекул ЛС.

Абсорбция(всасывание) – процесс поступления ЛС из места введения в кровь. Действие ЛС, начинающееся после всасывания ЛС в кровь, называют резорбтивным.

Всасыванию ЛС благоприятствуют такие факторы, как липофильность(жирорастворимость) ЛС, которая зависит от степени полярности (степени ионизации) их молекул. Чем меньше полярность, тем больше липофильность ЛС, и, наоборот, с возрастанием полярности молекул ЛС возрастает гидрофильность(водорастворимость) ЛС.

Читайте также:  Перестилание тяжелобольного пациента 2мя способами

Важными структур­ными компонентами биомембран являются фосфолипиды (жироподобные вещества — фосфоглицериды). Так как жиры растворяются в жирах, то и липофильные ЛС, растворяясь в липидах, легко проникают через биомембраны и гистогематические(тканевые, биологические)барьеры (гематоэнцефалический барьер – ГЭБ, плацентарный барьер и др.). Гидрофильные (водорастворимые) ЛС быстрее липофильных проникают через тонкие стенки капилляров, т. е. быстрее всасываются при подкожных и внутримышечных инъекциях, но хуже всасываются из желудочно-кишечного тракта (ЖКТ) и не могут проникать в кровь, например, при сублигвальном (под язык) или буккальном (под щёку) способах введения. Не проникая в клетку, водорастворимые ЛС своё фармакологическое действие оказывают через мембранные рецепторы клеток.

На всасывание (и выведение) ЛС, представляющих собой слабые органические ки­слоты или основания (щёлочи), влияет значение pH(показатель отрицательного десятич­ного логарифма концентрации ионов водорода). Степень ионизации таких ЛС изменя­ется при незначительном уменьшении или увеличении рН окружающей среды: при повы­шении рН (ощелачивании среды) ионизация кислот усиливается, а оснований снижается. Наоборот, при закислении окружающей среды снижается ионизация кислот и возрастает ионизация оснований. Соответственно степени ионизации молекул ЛС изменяется и их жироводорастворимрость, а, следовательно, и прони­кающая способность.

Метаболизму (биотрансформации, т. е. химическому видоизменению) ЛС могут подвергаться в организме в любых органах и тканях, но, главным образом, в печени. Большинство ферментов печени, участвующих в метаболизме ЛС, находятся в микросомах (структурных элементах эндоплазматического ретикулума) печёночных кле­ток. Поэтому метаболизм ЛС в клетках печени с участием данных ферментов называют микросомальной биотрансформацией(см. схему 2 на стр. 5).

Реакции первого типа (несинтетического характера) – это чаще всего реакции окисления (присоединения кислорода или удаления водорода) с образованием в моле­куле ЛС активного радикала (иона). Реакции второго типа (синтетического характера) в большинстве случаев являются реакциями комлексообразования (конъюгации)ЛСс полярными эндогенными мо­лекулами (например, с глюкуроновой кислотой). В результате метаболизма молекулы ЛС ионизируются, т. е. становятся водорастворимыми, и в таком виде выводятся из организма через почки. Микросомальной биотрансформации в первую очередь подвергаются липофильные ЛС.

Схема 2.

Схема биотрансформации ЛС

Производное

Лекарство

.

Реакции

Конъюгат

Реакции типа 2

Некоторые препараты (пролекарства) сами по себе фармакологической активностью не обладают, а биологически активными становятся образующиеся в организме их метаболиты (продукты метаболизма), кото­рые затем также выводятся из организма через почки.

Часть дозы ЛС (в %), достигшая большого круга кровообращения (системного кровотока), определяет биодоступность препарата. Термин «биоэквивалентность­»определяет относительную (сравнительную) биодоступность препаратов – дженериков или одного и того же ЛС при применении его в различных вариантах. Два ЛС биоэквива­лентны, если они обеспечивают одинаковую биодоступность.

Вса­сывание ЛС, принятого внутрь (per os), происходит через стенки кишечника в систему воротной (портальной) вены, а по ней ЛС поступает в печень. Видом биодоступности являетсяусвояемость ЛС при пероральном приёме(доля препарата (в %), принятого per os, которая, пройдя через печень, достигла системного кровотока). Величина этой доли тем больше, чем полнее ЛС всасывается из ЖКТ и чем меньше его метаболизм первичного прохождения через печень (или пресистемный– до поступления в системный кровоток —метаболизм). Величина усвояемости ЛС при перораль­ном приёме считается высокой, если она составляет более 60%, средней – от 30% до 60% и низкой, если она менее 30% от количества ЛС принятого внутрь.

На усвояемость ЛС при пероральном приёме может влиять пища. Обычно пища сни­жает усвояемость тех препаратов, которые слабо растворяются в жирах, вызывая тем самым проблему их всасывания, и, наоборот, повышает усвояемость жирорастворимых препаратов. Последнее связано с тем, что пища усиливает кровоток в воротной вене, увеличивая доставку ЛС в печень, и открывает обходные пути для прохождения препа­рата внутри печени.

Часть ЛС или их активные метаболиты из печени выделяются вместе с желчью в кишечник, где вновь могут всасываться в систему портальной вены, обусловливая так называемую кишечно-печёночную циркуляцию.

Метаболизорованная часть ЛС выводится из организма, с желчью или через почки. Потеря части ЛС (в %) после первичного прохождения через печень носит название пресистемной элиминациейилиэлиминацией первого прохождения. Сумма усвояемости ЛС при пероральном приёме и элиминации первичного происхождения составляет 100% от дозы препарата, принятого внутрь.

Пресистемного метаболизма избегают жирорастворимые ЛС, принимаемые сублигвально, буккально, интраназально. Всасывание этих ЛС происходит прямо в систем­ный кровоток (минуя печень). При интраназальном способе введения жирорастворимое ЛС, проникая через ГЭБ, быстро достигает субарахноидального про­странства головного мозга. Например, интраназально для стимуляции дыхания можно вводить кордиамин, а для обезболивания – фентанил или кетамин.

Читайте также:  Способ измерения денежной массы

Также легко проникают в системный кровоток, не подвергаясь пресистемной элимина­ции, ЛС при ректальномспособе введения, который может быть альтернативой паренте­ральному введению при наличии у больного тошноты или рвоты. ЛС при этом поступает в систему геморроидальных вен и по ним в нижнюю полую вену, минуя печень. Введение таким способом тиопентала натрия или диазепама может быть использовано для быст­рой анестезии или купирования судорог.

Чтобы создать максимальную концентрацию ЛС в плазме крови и обеспечить быструю его доставку к органам — мишеням, производят болюсное (внутривенное струйное) вве­дение ЛС в течение 1 мин. При этом, как правило, используют высшую разовую дозу ЛС, называемую болюсной (ударной)дозойЛС. При таком введении биодоступность препарата составляет 100%.

В настоящее время созданы специальные лекарственные формы – пластыри с нане­сёнными на них ЛС, так называемые трансдермальные(чрезкожные)транспортные системы (ТТС). Они содержат специальный слой, контролирующий скорость высвобожде­ния препарата, благодаря чему отсутствует резкое повышение и снижение концентрации препарата в плазме крови. Всасывание ЛС — ТТС лучше происходит через тонкую кожу (напри­мер, за ушной раковиной).

Подкожно могут использоваться специальные препараты, создающие в подкожно-жиро­вом слое депо(запас) ЛС. Например, депо–препарат — гормональное противозачаточ­ное ЛС – норплант (в виде капсул левоноргестрела для имплантации) обеспечивает стойкий эффект в течение 5 лет. Широко применяются таблетки для имплантации в под­кожную жировую клетчатку или в мышечную ткань препарата эспераль (синонимы: ди­сульфирам, тетурам, антабус, ратодер), являющегося ингибитором ацетальдегидроге­назы (фермента, участвующего в метаболизме этилового спирта).

В крови ЛС может значительно (более чем на 80%) связываться с белками крови(чаще саль­буминами). Связанная с белком часть ЛС становится фармакологически неактивной, не проникает через биомембраны и не выводится из организма через почки. Т. е. связанная фракция ЛС представляет собой своеобразное депо (резерв) ЛС в организме. Значение связи ЛС с белком особенно важно для водорастворимых ЛС: без этой связи водорастворимые молекулы ЛС немедленно выводились бы из организма через почки.

Клинико — фармакологический эффект определяется ис­ключительно свободной от белка фракциейЛС, которая находится в постоянном динамическом равновесии со своей связанной фракцией: с выходом из плазмы крови молекулы свободной фракции ЛС её место, освобождаясь из связи с белком, заполняет другая молекула ЛС из связанной фракции. Таким образом поддерживается постоянная концентрация свободного препарата в крови.

Практическое значение степень связывания ЛС с белком не имеет, т. к. при значительном снижении уровня альбуминов плазмы или при вытеснении из связи с белком одного ЛС другим уровень свободной фракции ЛС остаётся постоянным, т. к. образующийся при этом избыток свободной фракции ЛС тут же выводится из организма через почки. Но при этом снижается величина связанной с белком фракции ЛС в организме, а значит и сокращается время действия препарата.

Распределение ЛС в различных органах и тканях происходит с разной скоростью: быстрее в крови и хорошо кровоснабжаемых органах (сердце, лёгких, печени, почках, эндокринных железах); медленнее в мышцах, коже, жировой ткани. Основным результа­том процессов распределения считают поступление ЛС всвоюбиофазу (место действия ЛС).

Главными органами, ответственными за экскрецию(элиминацию или выведение) ЛС из организма, являются почки и печень. Большинство ЛС выводится по экспоненциальной зависимости: чем выше концентрация ЛС в плазме, тем выше скорость его выведения, т. е. при умень­шении концентрации ЛС в плазме соответственно снижается и скорость его выведе­ния.

Клиренс ЛС (Cl)– объём плазмы крови, освобождающийся от ЛС в единицу времени. Клиренс – важный показатель скорости выведения ЛС из организма: он определяет, приём какой дозы ЛС в единицу времени необходим для поддержания заданной концентрации ЛС в плазме. Для поддержания стационарной (постоянной) концентрацииЛС в системном кровотоке необходимо, чтобы ЛС поступало в организм с той же скоростью, с которой оно и выводится.

Клиренс ЛС, полностью удаляемых через почки в неизменённом виде (почечный клиренс ЛС), пропорционален клиренсу креатинина (ClCr).Креатинин плазмы крови является одним из конечных продуктов азотистого об­мена и выводится почками путём клубочковой фильтрации. Скорость клиренса креатинина примерно соответствует ско­рости клубочковой фильтрации (120 — 130 мл в минуту) и является показателем состояния функции почек.В нормеClCr не менее 1,5 мл в секунду.

Источник

Оцените статью
Разные способы