Способ прекращения горения пеной

Способ прекращения горения пеной

6.6. Способы и средства тушения пожаров

Прекращение горения в условиях пожара осуществляется следующими методами: прекращением доступа в зону горения окислителя (кислорода воздуха) или горючего вещества, а также снижением их поступления до величин, при которых горение невозможно; охлаждением зоны горения ниже температуры самовоспламенения или понижением температуры горящего вещества ниже температуры воспламенения; разбавлением горючих веществ негорючими; интенсивным торможением скорости химических реакций в пламени (ингибированием горения), механическим срывом (отрывом) пламени сильной струей газа или воды.

На этих принципиальных методах и основаны известные способы и приемы прекращения горения в условиях пожара с использованием огнегасящих веществ.

Основными огнегасящими веществами являются вода, химическая и воздушно-механическая пены, водные растворы солей, инертные и негорючие газы, водяной пар, галоидоуглеводородные огнегасящие составы и сухие огнетушащие порошки.

Вода – наиболее распространенное средство тушения пожаров. Попадая в зону горения, она нагревается и испаряется, поглощая большое количество теплоты. При испарении воды образуется большое количество пара (из одного литра воды образуется более 1700 л пара), который затрудняет доступ воздуха к очагу горения. Кроме того, сильная струя воды может сбить пламя, что облегчает тушение пожара. Вода используется в виде компактных и распыленных струй (размер капель более 100 мкм), в тонкораспыленном состоянии (размер капель

Для тушения легковоспламеняющихся жидкостей широко применяют огнегасительную пену. Пена представляет собой массу пузырьков газа, заключенных в тонкие оболочки жидкости. Растекаясь по поверхности горящей жидкости, пена изолирует очаг горения. На практике применяют два вида пены: химическую и воздушно-механическую.

Химическая пена получается при взаимодействии щелочного и кислотного растворов в присутствии пенообразователей. При этом образуется газ (диоксид углерода). Пузырьки газа обволакиваются водой с пенообразователем, в результате создается устойчивая пена, которая может долго оставаться на поверхности жидкости. Вещества, которые необходимы для получения диоксида углерода, применяются или в виде водных растворов, или сухих пенопорошков . Использование химической пены в практике пожаротушения сокращается, ее все больше вытесняет воздушно-механическая пена.

Воздушно-механическая пена представляет собой смесь воздуха (-90%), воды (-9,7%) и пенообразователя (-0,3%). Характеристикой пены является кратность – отношение объема полученной пены к объему исходных веществ. Пену обычной кратности (до 20) получают с помощью воздушно-пенных стволов, принцип действия которых основан на том, что вода под давлением 0,3-0,6 МПа, предварительно смешанная с пенообразователем, поступает в специальное устройство, обеспечивающее подсос воздуха. За последнее время в практике тушения пожаров находит применение высокократная пена (кратность свыше 200), значительно более объемная и дольше сохраняющаяся. Она получается в генераторах высокократной пены, где воздух не подсасывается, а нагнетается под некоторым давлением.

Водяной пар применяют для тушения пожаров в помещениях объемом до 500 м 3 и небольших пожаров на открытых площадках и установках. Пар увлажняет горящие предметы и снижает концентрацию кислорода. Огнегасительная концентрация водяного пара в воздухе составляет примерно 35% по объему.

Инертные и негорючие газы, главным образом диоксид углерода и азот, понижают концентрацию кислорода в очаге горения и тормозят интенсивность горения. Поскольку диоксид углерода восстанавливается щелочными и щелочноземельными металлами, его нельзя применять для их тушения. Инертные газы обычно применяют в сравнительно небольших по объему помещениях. Огнегасительная концентрация инертных газов при тушении в закрытом помещении составляет 31-36 % к объему помещения.

Диоксид углерода является незаменимым средством для быстрого тушения небольших очагов пожара, а также благодаря своей неэлектропроводности – для тушения загоревшихся электродвигателей и других электротехнических установок. Он хранится в стальных баллонах в сжиженном состоянии под давлением. Вследствие расширения при выпуске диоксида углерода из баллона происходит сильное охлаждение, и образуются белые хлопья твердого диоксида углерода. В очаге горения твердый диоксид углерода испаряется, понижая температуру горящего вещества и уменьшая концентрацию кислорода.

Водные растворы солей относятся к числу жидких огнегасительных средств. Применяются растворы бикарбоната натрия, хлоридов кальция и аммония, глауберовой соли, аммиачно-фосфорных солей и др. Соли, выпадая из водного раствора, образуют на поверхности горящего вещества изолирующие пленки, отнимающие теплоту. При разложении солей выделяются негорючие газы.

Огнегасительное действие галоидоуглеводородных огнегасительных составов основано на химическом торможении реакции горения (ингибировании). Они являются предельными углеводородами, у которых один или несколько атомов водорода замещены атомами галоидов (фтора, хлора, брома). Применяются также составы на основе бромистого этила (3,5; 4НД; 7; СЖБ; БФ). Цифры 3, 5 и 7 означают, что эти составы в 3, 5 и 7 раз эффективнее диоксида углерода. В последнее время применение составов на основе бромистого этила ограничивают в связи с тем, что сам бромистый этил и его смеси с некоторыми другими веществами указанных выше составов в определенных условиях могут гореть.

Галоидоуглеводородные составы имеют большую плотность, что повышает эффективность пожаротушения, а низкие температуры замерзания позволяют использовать их при низких температурах воздуха.

Огнетушащие порошки представляют собой мелкоизмельченные минеральные соли с различными добавками, препятствующими их слеживанию и комкованию . Они обладают хорошей огнетушащей способностью, в несколько раз превышающей способность таких сильных ингибиторов горения, как галоидоуглеводороды , а также универсальностью применения, поскольку подавляют горение материалов, которые нельзя потушить водой и другими средствами (например, металлов и некоторых металлосодержащих соединений). Различают порошки общего и специального назначения. Основным компонентом состава ПСБ-3 являются бикарбонат натрия; ПФ – диаммоний фосфат; П-1А – аммофос; СИ-2 – силикагель, насыщенный хладоном (114В2) и др. Состав СИ-2 эффективно тушит некоторые пирофорные элементоорганические соединения.

Выбор огнегасительного вещества зависит от класса пожара. В настоящее время все пожары делят на пять классов – А, В, С, О, Е. В табл. 6.1 приведена классификация пожаров и рекомендуемые вещества.

Источник

Механизмы прекращения горения пеной. Огнетушащая способность пен

Следует выделить три основных механизма прекращения горения пеной:

1. Изоляция паров горючей жидкости от зоны горения. Например, скорость испарения бензина под слоем пены толщиной 5 см уменьшается в 30 — 40 раз. Вследствие этого реакционная зона обедняется горючим компонентом. Скорость химической реакции уменьшается, тепловыделение падает. Температура зоны горения снижается до температуры потухания. Изолирующее действие пены зависит от ее физико-химических свойств, структуры, от толщины слоя, а также от природы горючего материала и температуры на его поверхности.

2. Охлаждение прогретого слоя отсеком жидкости пены. Особенно существенное значение этот механизм имеет при тушении пеной твердых горючих материалов.

3. Экранирование горящей жидкости от лучистого теплового потока. Вследствие низкой теплопроводности пены поступление тепла к поверхности горючего материала затруднено.

Кроме того, при тушении пеной имеют место:

— разбавление горючей смеси в зоне горения парами пенообразующего раствора;

— охлаждение парами воды зоны горения.

Тушение жидкости может быть достигнуто при подаче на ее поверхность такого слоя пены, через который пары горючей жидкости не смогут прорваться в зону горения.

При увеличении площади пожара увеличивается удельный расход огнетушащего средства на единицу площади, соответственно, увеличивается и интенсивность подачи. Это объясняется тем, что происходит скопление пены в местах слива и связанное с этим ее разрушение и ухудшение распределения по площади очага горения.

2.2.5. Применение пены

Как уже указывалось ранее, пенами тушат пожары классов А и В.

По способу получения пены бывают химическими и воздушно-механическими.Химические пены, образующиеся при взаимодействии растворов кислот и щелочей в присутствии пенообразующего раствора, из-за сравнительно высокой стоимости и сложности организации тушения ими пожаров используются крайне редко.

В настоящее время повсеместно используются воздушно-механические пены, для получения которых используют специальную технику.

Воздушно-механическая пена (ВМП) может быть:

— низкой кратности (3 200).

Воздушно-механическая пена низкой кратности получается из стволов воздушно пенных, в которых используется принцип эжекции (подсоса) воздуха и перемешивания его с водным раствором. Дальность струи такой пены не менее 28 м. Она имеет ограниченное применение. ВМП низкой кратности используется для тушения разлитых нефтепродуктов, складов древесины и волокнистых материалов, т.к. она хорошо проникает в неплотности и удерживается на поверхности. Следует помнить, что вследствие высокой плотности существует вероятность погружения пены низкой кратности внутрь горючей жидкости.

Широкое применение имеет воздушно-механическая пена средней кратности. Для ее получения используют простую пеногенерирующую аппаратуру типа ГПС-200, ГПС-600, ГПС-2000, обеспечивающую одновременную подачу на металлическую сетку 2 — 6 % водного раствора пенообразователя и эжектируемого потоком этого раствора воздуха. Дальность подачи струи такой пены 10-13 м. Пеной средней кратности тушат по площади и по объему. Она является основным средством тушения пожаров нефти и нефтепродуктов в резервуарах и на разлитых поверхностях. Она также используется для вытеснения дыма при объемном тушении, изоляции расположенных рядом с очагами пожара объектов от воздействия тепловых и газовых потоков. Но после применения пены в подвалах и тоннелях, шахтах и т.д. отдельные очаги горения необходимо ликвидировать водяными струями.

Воздушно-механическая пена высокой кратности получается из пеногенерирующих установок в результате принудительного наддува воздуха в пеногенератор от вентилятора. Такая пена применяется при объемном тушении для локализации пожара, снижения температуры, вытеснения дыма, для осаждения радиоактивных загрязнений из воздуха, тушения пожаров органических растворителей, тушения пожаров на кораблях, в библиотеках, архивах, шахтах и т.д. Недостатки:

— подача ее на значительное расстояние затруднена;

— она легко сдувается ветром и восходящими потоками продуктов горения;

— она быстро разрушается при контакте с сухими предметами и очень чувствительна к воздействию высоких температур;

— при ее использовании в закрытых помещениях должно быть предусмотрено отверстие для удаления воздуха и т.д.

Следует помнить, что из-за хорошей электропроводности пенного раствора запрещено применять пены для тушения пожаров в электроустановках. Это необходимо учитывать при использовании воздушно-механической пены низкой и средней кратности. Кроме того, при контакте с горящими щелочными и щелочноземельными металлами наблюдается химическое взаимодействие их с содержащейся в пене водой, поэтому использовать пену для их тушения не допускается.

Источник

Прекращение горения на пожарах

В данной статье рассматриваются вопросы, связанные с прекращением горения, ограничением интенсивности его развития и распространения наиболее простыми и эффективными средствами.

Большое внимание заслуживают параметры и условия, за границами которых горение не может протекать.

Прежде всего, сюда следует отнести: концентрационные пределы распространения пламени, температурные пределы распространения пламени и ряд других параметров, которые являются производными от этих пределов.

Процессы горения не могут протекать вне значений указанных параметров, т.е. процессы горения либо не возникают, а если они существовали, то прекратятся.

Эти параметры представляют интерес для пожарной тактики в связи с тем, что возникает возможность оказывать влияние на эти величины и, изменяя тем или иным образом условия, можно добиться прекращения горения.

Читайте также:  Карьерный способ добычи угля это открытый

На основе этих параметров можно сформулировать основные направления и способы прекращения горения: снижение скорости тепловыделения или увеличение скорости теплоотвода от зоны горения.

Основой является снижение температуры зоны горения до значений ниже температуры потухания. Достигнуть этого можно на основе четырех известных принципов прекращения горения:

  • охлаждения реагирующих веществ;
  • изоляции реагирующих веществ от зоны горения;
  • разбавления реагирующих веществ до негорючих концентраций или концентраций, не поддерживающих горение;
  • химического торможения реакции горения.

Для этих целей применяются различные огнетушащие вещества.

Классификация огнетушащих веществ, способов и приемов прекращения горения

Под огнетушащими веществами в пожарной тактике понимаются такие вещества, которые непосредственно воздействуют на процесс горения и создают условия для его прекращения (вода, пена, порошки и др.).

Огнетушащих веществ в природе много. Кроме того, современная технология позволяет получать такие огнетушащие вещества, которых нет в природе. Однако не все огнетушащие вещества принимаются на вооружение пожарных подразделений, а лишь те, которые отвечают определенным требованиям. Они должны:

  • обладать высоким эффектом тушения при сравнительно малом расходе;
  • быть доступными, дешевыми и простыми в применении;
  • не оказывать вредного действия при их применении на людей и материалы, быть экологически чистыми.

По основному (доминирующему) признаку прекращения горения огнетушащие вещества подразделяются на:

  • охлаждающего действия (вода, твердый диоксид углерода и др.);
  • разбавляющего действия (негорючие газы, водяной пар, тонкораспыленная вода и т.п.);
  • изолирующего действия (воздушно-механическая пена различной кратности, сыпучие негорючие материалы и пр.);
  • ингибирующего действия (галоидированные углеводороды: бромистый метилен, бромистый этил, тетрафтордибромэтан, огнетушащие составы на их основе и др.).

Однако следует отметить, что все огнетушащие вещества, поступая в зону горения, прекращают горение комплексно, а не избирательно, т.е. вода, являясь огнетушащим веществом охлаждения, попадая на поверхность горящего материала, частично будет действовать как вещество разбавляющего и изолирующего действия. Более подробно механизм прекращения горения водой и другими огнетушащими веществами будут рассмотрены ниже.

Вид и характер выполнения боевых действий в определенной последовательности, направленных на создание условий прекращения горения, называется способом прекращения горения.

В зависимости от основного процесса, приводящего к прекращению горения, способы тушения можно разделять на четыре группы (рис. 1):

  • охлаждения зоны горения или горящего вещества;
  • разбавления реагирующих вещества;
  • изоляции реагирующих веществ от зоны горения;
  • химического торможения реакции горения.

Способы прекращения горения, основанные на принципе охлаждения реагирующих веществ или горящих материалов, заключаются в воздействии на них охлаждающими огнетушащими веществами; основанные на изоляции реагирующих веществ от зоны горения — в создании между зоной горения и горючим материалом или окислителем изолирующего слоя из огнетушащих материалов и веществ; основанные на разбавлении реагирующих веществ или химическом торможении реакции горения — в создании в зоне горения или вокруг нее негорючей газовой или паровой среды.

Подведем некоторые итоги вышесказанного, оформив их в виде схемы (рис. 2).

Каждый из способов прекращения горения можно выполнить различными приемами или их сочетанием. Например, создание изолирующего слоя на горящей поверхности легковоспламеняющейся жидкости может быть достигнуто подачей пены через слой горючего, с помощью пеноподьемников, навесными струями и т.п.

Приемы тушения — это те составные части способа прекращения горения, которые могут изменяться в процессе действий пожарных подразделений при изменении обстановки на пожаре, могут изменяться и способы. Применение того или иного способа и приема прекращения горения, огнетушащего вещества зависит от:

  • условий и характера развития пожара;
  • свойств и состояния горючих материалов;
  • трудоемкости и безопасности выполняемой работы личным составом;
  • наличие у руководителя тушения пожара сил и средств;
  • боеготовности пожарных подразделений и др.

Все это направлено на наименьшие убытки и затраты.

Механизм прекращения горения

Охлаждающие огнетушащие вещества

Для охлаждения горящих материалов применяются жидкости, обладающие теплоемкостью. Для большинства горючих материалов применяется вода.

Попадая в зону горения, вода отнимает от горящих материалов и продуктов горения большое количество тепла. При этом она частично испаряется и превращается в пар, увеличиваясь в объеме в 1700 раз (из 1 л воды при испарении образуется 1700 л пара), благодаря чему происходит разбавление реагирующих веществ, что само по себе способствует прекращению горения, а также вытеснению воздуха из зоны пожара.

Вода обладает высокой термической стойкостью. Ее пары только при температуре свыше 1700°С могут разлагаться на кислород и водород, усложняя тем самым обстановку в зоне горения. Большинство же горючих материалов горит при температуре, не превышающей 1300-1500°С и тушение их водой не опасно. Однако металлические магний, цинк, алюминий, титан и его сплавы, при горении создают в зоне горения температуру, превышающую термическую стойкость воды. Тушение их водой недопустимо.

Вода имеет низкую теплопроводность, что способствует созданию на поверхности горящего материала надежной тепловой изоляции. Это свойство в сочетании с предыдущими позволяет использовать ее не только для тушения, но и для защиты материалов от воспламенения.

Малая вязкость и несжимаемость воды позволяет подавать ее по рукавам на значительные расстояния и под большим давлением.

Пары воды способны растворять некоторые горючие пары, газы и поглощать аэрозоли. Распыленной водой можно осаждать продукты горения на пожарах в зданиях. Для этих целей применяют распыленные и тонкораспыленные струи.

Некоторые горючие жидкости (жидкие спирты, альдегиды, органические кислоты и др.) растворимы в воде, поэтому, смешиваясь с водой, они образуют негорючие или менее горючие растворы.

Наряду с этим у воды имеются и отрицательные свойства. Основной недостаток у воды как огнетушащего вещества заключается в том, что из-за высокого поверхностного натяжения (72,8×10 -3 Дж/м 2 ) она плохо смачивает твердые материалы и особенно волокнистые вещества.

Для устранения этого недостатка к воде добавляют поверхностно-активные вещества (ПАВ), или, как их еще называют — смачиватели. На практике используют растворы ПАВ, поверхностное натяжение которых в 2 раза меньше, чем у воды.

Применение растворов смачиваетелей позволяет уменьшить расход воды при тушении пожаров на 35-50%; снизить время тушения на 20-30%, что обеспечивает тушение одним и тем же объемом огнетушащего вещества на большой площади. Рекомендуемые концентрации смачивателей, %, в водных растворах для тушения пожаров приведены ниже:

Смачиватель ДБ 0,2
Сульфонат 0,4
Сульфанол НП-1 0,4
Синтанол Д-ЗС 0,5
Первичные апкилсульфаты С—С 0,6
Рафинированный алкнлкрнлсульфонат (РАС) 2
Эмульгатор ОП-4 2
ОП-6 4
ОП-20 4
Сульфанол НП-3 0,6
Смачиватель НБ 0,75
Сульфанол хлорный 1
Вторичные апкилсульфаты (очищенные) 1,5
Пенообразователи ПО-1Д 5,0
Нейтрализованный черный контакт (НЧК) 5

Вода имеет относительно большую плотность (при 4°С — 1 г/см 3 , при 100°С — 0,958 г/см 3 ), что ограничивает, а иногда и исключает ее применение для тушения нефтепродуктов, имеющих меньшую плотность и нерастворимых в воде. Она хорошо тушит сероуглерод, имеющий более высокую плотность, чем вода (1,264 г/см 3 ).

Вода с абсолютным большинством горючих веществ не вступает в химическую реакцию. Исключение составляют щелочные и щелочно-земельные металлы, при взаимодействии которых с водой выделяется водород. Их тушить водой нельзя.

Выше отмечалось, что вода имеет малую вязкость. В силу этого значительная часть ее утекает с места пожара, не оказывая существенного влияния на процесс прекращения горения. Если увеличить вязкость воды до 2,5×10-3 м/с, то значительно снизится время тушения и коэффициент ее использования повысится более чем в 1,8 раза. Для этих целей применяют добавки из органических соединений, например, КМЦ (карбоксиметилцеллюлоза).

Огнетушащая эффективность воды зависит от способа подачи ее в очаг пожара (сплошной или распыленной струей). Механизм прекращения горения и эффективность применения сплошных струй рассмотрим на примере тушения древесины. На (рис. 3) схематично показаны процесс горения и эпюра распределения температур в древесине. Под воздействием тепла, выделяющегося в зоне реакции, на поверхности материала образуется слой угля, температура которого около 600-700°С, что значительно превышает температуру начала пиролиза древесины, равную около 200°С.

На рис. 4, а и б схематично показаны воздействия на горящую древесину сплошной (компактной) и распыленной водяных струй.

Поданная вода при этом:

  • охлаждает верхний наиболее нагретый слой угля и зоны реакции, пролетая через нее;
  • испаряясь, разбавляет и охлаждает газы и пары в зоне горения;
  • растекаясь по поверхности угля, изолирует древесину от действия лучистого тепла, препятствует выходу паров и газов (продуктов разложения древесины) в зону горения.

Но к прекращению горения приводит охлаждающее свойство воды как доминирующее. Изоляция и разбавление лишь способствуют прекращению горения.

Поданная вода на тушение горящей древесины быстро снижает температуру в верхнем слое угля, и горение на этом участке прекращается. Быстро — потому, что значительная разность температуры у угля и воды; в тонком слое — из-за небольшой теплопроводности угля и кратковременного контакта его с водой. Вот почему при переносе струи воды в другое место верхний слой угля быстро высыхает, продолжается разложение древесины и горение возникает вновь.

Для охлаждения отдельных видов горючих материалов кроме воды применяется твердый диоксид углерода. Это мелкая кристаллическая масса с плотностью r = 1,53 кг/м 3 , которая при нагревании переходит в газ, минуя жидкое состояние. Это позволяет тушить ею материалы, портящиеся от воздействия влаги. Кипит твердая углекислота (диоксид углерода) при температуре -78,5°С, и теплота ее испарения равна 573,6 Дж/кг. Эта цифра значительно меньше, чем у воды, однако скорость охлаждения горящих веществ достаточно высокая. Это объясняется большой разностью температур у углекислоты и на поверхности горящего материала, а также большой теплоемкостью углекислого газа.

Твердый диоксид углерода прекращает горение всех горючих веществ, за исключением металлического натрия и калия, магния и его сплавов. Он не электропроводен и не смачивает горючие вещества. Поэтому применяется для тушения электроустановок под напряжением, двигателей, а также при пожарах в архивах, музеях, библиотеках, на выставках и т.д. При тушении он подается на поверхность горящих веществ равномерным слоем.

Несмотря на то, что плотность твердой углекислоты больше, чем воды, вследствие непрерывного перехода в газ и создания своеобразной газовой подушки, она не тонет в горящей жидкости и находится на ее поверхности. Верхний слой горящего вещества при этом охлаждается, и количество горючих паров и газов в зоне горения уменьшается. Возгонка (кипение) твердой углекислоты в газ и испарение горючего вещества происходят на одной поверхности. Поэтому в зону горения поступает смесь горючих паров с диоксидом углерода, что приводит к снижению скорости реакции и температуры горения ниже температуры потухания, а значит и к ликвидации пожара.

Из вышесказанного следует вывод, что механизм прекращения горения твердым диоксидом углерода заключается в охлаждении горящих материалов и разбавлении их паровой фазы или продуктов разложения диоксидом углерода одновременно. Однако в прекращении горения большее влияние оказывает процесс охлаждения. Действительно, горение не прекращается сразу после подачи слоя твердой углекислоты на поверхность горящего материала, т.е. когда объем образующегося диоксида углерода максимальный. Горение прекращается именно после снижения температуры горящего материала, снижения скорости испарения и термического разложения.

Читайте также:  Это отличный способ получить

Наиболее быстро твердая углекислота охлаждает жидкие горючие вещества, так как они своей текучестью компенсируют недостаток ее удельной поверхности соприкосновения. Значительно медленнее происходит охлаждение (прекращение горения) горящих твердых веществ (древесины, резины и т.п.), и оно вообще не наступает у волокнистых веществ и материалов (хлопок, шерсть, торф).

Снизить температуру горящего слоя горючих веществ и тем самым прекратить горение можно перемешиванием самих горящих веществ.

Всем известен прием прекращения самонагревания сырого зерна на току перелопачиванием. Это не что иное, как прекращение горения за счет дробления очага пожара, увеличения его поверхности теплообмена, т.е. за счет охлаждения.

Путем перемешивания можно прекратить горение и горючих жидкостей. Очевидно, что в процессе горения жидкости прогреваются в глубину. Первоначально толщина прогретого слоя не превышает нескольких сантиметров, и нижние слои горячей жидкости в резервуаре имеют первоначальную температуру, т.е. температуру хранения. Если перемешать жидкость, то можно охладить верхний ее слой и тем самым снизить скорость горения (рис. 5). При определенных условиях степень охлаждения может оказаться такой, что температура верхнего слоя жидкости снизится ниже температуры воспламенения, и горение прекратится. Опытами и практикой доказано, что такое явление может наступить в случае, когда температура вспышки горючей жидкости не менее чем на 5°С выше температуры хранения ее в данных условиях. Например, при температуре воздуха 30°С можно прекратить горение перемешиванием жидкости в резервуаре е температурой вспышки 35°С и более.

Но при этом должно быть выполнено дополнительное условие — интенсивное охлаждение стенок горящего резервуара.

Изолирующие огнетушащие вещества

Создание между зоной горения и горючим материалом или воздухом изолирующего слоя из огнетушащих веществ и материалов — распространенный способ тушения пожаров, применяемый пожарными подразделениями. При его реализации применяются самые разнообразные огнетушащие средства, способные на некоторое время изолировать доступ в зону горения либо кислорода воздуха, либо горючих паров и газов.

В практике пожаротушения для этих целей широкое применение нашли:

  • жидкие огнетушащие вещества (пена, в некоторых случаях вода и пр.);
  • газообразные огнетушащие вещества (продукты взрыва и т.д.);
  • негорючие сыпучие материалы (песок, тальк, флюсы, огнетушащие порошки и т.д.);
  • твердые тканевые материалы (асбестовые, войлочные покрывала и другие негорючие ткани, в некоторых случаях листовое железо).

Основным средством изоляции являются огнетушащие пены: химическая и воздушно-механическая.

Некоторые свойства химической пены: плотность 0,15-0,25 г/м 3 ; кратность примерно равна 5. Трудоемкость получения химической пены и достаточно высокие материальные затраты, вредное воздействие на органы дыхания личного состава пеногенераторного порошка в процессе введения его в воду и другие недостатки ограничивают ее практическое применение.

Воздушно-механическая пена (ВМП) получается в результате механического перемешивания водного раствора пенообразователя с воздухом в специальном стволе или генераторе. Различают ВМП низкой, средней и высокой кратности. Кратность ВМП зависит от конструкции ствола (генератора), с помощью которого она получается.

Основное огнетушащее свойство пен — изолирующая способность. Пена изолирует зону горения от горючих паров и газов, а также горящую поверхность горючего материала от тепла, излучаемого зоной реакции. На рис. 6 можно наглядно все это представить. Прежде чем накопится на горящей поверхности достаточным слоем, изолирующим выход горючих паров и газов в зону горения, пена под действием тепла разрушается и охлаждает вещество. При этом жидкость, из которой получена пена, испаряется, разбавляя горючие пары и газы, поступающие в зону горения и т.д. Все это способствует прекращению горения, хотя изоляция — доминирующее свойство, которое приводит именно к потуханию.

Другое свойство пены, представляющее интерес для работников пожарной охраны —- стойкость, т.с. способность какое-то время сохраняться, не разрушаясь. Ведь именно от этого свойства зависит нормативное время тушения пенами тех или иных горючих веществ и материалов.

Специфические свойства воздушно-механической пены (ВПМ) средней и высокой кратности приводятся ниже:

  • хорошо проникает в помещения, свободно преодолевает повороты и подъемы;
  • заполняет объемы помещений, вытесняет нагретые до высокой температуры продукты сгорания (в том числе токсичные), снижает температуру в помещении в целом, а также строительные конструкции и т.п.;
  • прекращает пламенное горение и локализует тление веществ и материалов, с которыми соприкасается;
  • создает условия для проникновения ствольщиков к очагам тления для дотушивания (при соответствующих мерах защиты органов дыхания и зрения от попадания пены).

На основании этих свойств данные виды пены (особенно средней кратности) нашли применение при объемном тушении в помещениях зданий, трюмах судов, в кабельных тоннелях и на других объектах. Пена средней кратности является основным средством тушения ЛВЖ и ГЖ как в резервуарах, так и разлитых на открытой поверхности. Однако отсутствие видимости при работе с пеной затрудняет ориентацию в помещении. Принимая во внимание хорошую смачивающую способность пены, начальствующий состав должен принимать меры для переодевания личного состава в сухую одежду после работы в пене. Этот факт приобретает особую значимость при ликвидации пожаров в осенне-зимний и весенний периоды.

Для продвижения пены при заполнении ею помещений необходимо создать благоприятные условия, т.е. вскрыть проемы для выпуска продуктов сгорания из помещения, или с помощью передвижных установок для удаления дыма изменить направление газообмена но ходу движения пены.

В настоящее время для тушения различных горючих веществ все более широкое применение находят огнетушащие порошковые составы. Они не токсичны, не оказывают вредного воздействия на материалы, не электропроводны и не замерзают.

Механизм прекращения горения порошками заключается в основном в изоляции горящей поверхности от зоны горения, т.е. в прекращении доступа горючих паров и газов в зону реакции. Основным критерием прекращения горения порошковым составом является удельный расход.

В случае объемного тушения — механизм прекращения горения заключается в химическом торможении реакции горения, т.е. ингибирующем воздействии порошков, связанном с обрывом цепной реакции горения.

Разбавляющие огнетушащие вещества

Для прекращения горения разбавлением реагирующих веществ применяются такие огнетушащие средства, которые способны разбавить либо горючие пары и газы до негорючих концентраций, либо снизить содержание кислорода воздуха до концентрации, не поддерживающей горения.

Приемы прекращения горения заключаются в том, что огнетушащие средства подаются либо в зону горения или в горящее вещество, либо в воздух, поступающий в зоне горения. Наибольшее распространение они нашли в стационарных установках пожаротушения для относительно замкнутых помещений (трюмы судов, сушильные камеры на промпредприятиях и т.д.), а также для тушения горючих жидкостей, пролитых на земле на небольшой площади. Кроме того, разбавление спиртов до 70% водой — необходимое условие для успешного тушения их в резервуарах воздушно-механической пеной.

Практика показывает, что в качестве разбавляющих огнетушащих средств наибольшее распространение нашли диоксид углерода (углекислый газ), азот, водяной пар и распыленная вода. В гарнизонах, имеющих на вооружении автомобили газоводяного тушения (АГВТ), для целей разбавления концентрации кислорода воздуха, поступающего к зоне горения, возможной использование газоводяной смеси.

Механизм прекращения горения при введении разбавляющих огнетушащих веществ в помещение, в котором происходит пожар, заключается в понижении объемной доли кислорода. При введении разбавляющих веществ в помещении повышается давление, происходит вытеснение воздуха и вместе с ним кислорода, увеличивается концентрация негорючих и не поддерживающих горение газов, парциальное давление кислорода падает.

Все это приводит к снижению скорости диффузии кислорода к зоне горения, уменьшается количество вступающих в реакцию горючих паров и газов, снижается количество выделяющегося тепла в зоне реакции. При определенной концентрации разбавляющих огнетушащих веществ в воздухе помещения температура горения снижается и становится меньше, чем температура потухания, и горение прекращается.

Практика и опыт тушения пожаров показывают, что пламенное горение большинства горючих материалов прекращается при снижении концентрации кислорода в воздухе помещения до 14-16%.

Углекислый газ применяется для тушения пожаров электрооборудования и электроустановок, в библиотеках, книгохранилищах и архивах и т.п. Однако им категорически запрещено тушение щелочных и щелочноземельных металлов.

Азот, главным образом, применяется в стационарных установках пожаротушения для тушения натрия, калия, бериллия и кальция. Для тушения магния, лития, алюминия, циркония применяют аргон, а не азот. Диоксид углерода и азот хорошо тушат вещества, горящие пламенем (жидкости и газы), плохо тушат вещества и материалы, способные тлеть (древесина, бумага).

К недостаткам диоксида углерода и азота как огнетушащих веществ следует отнести их высокие огнетушащие концентрации и отсутствие охлаждающего эффекта при тушении.

Водяной пар нашел широкое применение в стационарных установках тушения в помещениях с ограниченным количеством проемов, объемом до 500 м 3 (сушильные и окрасочные камеры, трюмы судов, насосные по перекачке нефтепродуктов и т.п.), на технологических установках для наружного пожаротушения, на объектах химической и нефтеперерабатывающей промышленности.

Предпочтение отдают насыщенному пару, хотя применяют и перегретый. Наряду с разбавляющим действием водяной пар охлаждает нагретые до высокой температуры технологические аппараты, не вызывая резких температурных напряжений, а пар, поданный в виде компактных струй, — способен механически отрывать пламя.

Тонкораспыленная вода (диаметр капель меньше 100 мк) — для получения ее применяют насосы, создающие давление свыше 2-3 МПа (20-30 атм) и специальные стволы-распылители.

Попадая в зону горения, тонкораспыленная вода интенсивно испаряется, снижая концентрацию кислорода и разбавляя горючие пары и газы, участвующие в горении. Об эффективности применения тонкораспыленной воды для целей пожаротушения свидетельствуют опыты, проведенные на морских судах, где установлено, что после четырехминутной работы одного ствола высокого давления температура в помещениях кают снижалась с 700 до 100°С, содержание аэрозоля в дыму уменьшалось в 3 раза, увеличивалась освещенность предметов источником света, резко снижалось содержание оксида углерода за счет поглощения водой.

Таким образом, разбавляющие огнетушащие средства, наряду с охлаждающим и изолирующим, обладают достаточно высоким эффектом тушения и должны настойчиво внедряться в практику работы пожарных подразделений. Особое внимание при этом следует уделить более широкому применению тонкораспыленной воды.

Огнетушащие вещества химического торможения

Сущность прекращения горения химическим торможением реакции горения заключается в том, что в воздух горящего помещения или непосредственно в зону горения вводятся такие огнетушащие вещества, которые вступают во взаимодействие с активными центрами реакции окисления, образуя с ними либо негорючие, либо менее активные соединения, обрывая тем самым цепную реакцию горения. Поскольку эти вещества оказывают воздействие непосредственно на зону реакции, в которой реагирующие вещества находятся в паровоздушной фазе, они должны отвечать следующим специфическим требованиям:

  • иметь низкую температуру кипения, чтобы при малых температурах разлагаться, легко переходить в парообразное состояние;
  • иметь низкую термическую стойкость, т.е. при малых температурах разлагаться на составляющие их атомы и радикалы;
  • продукты термического распада огнетушащих веществ должны активно вступать в реакцию с активными центрами.

Этим требованиям отвечают галоидированные углеводороды — особо активные вещества, оказывающие ингибирующее действие, т.е. тормозящие химическую реакцию горения. Однако в отношении этих веществ следует напомнить общие требования к огнетушащим веществам и особенно на такое, как токсичность. Наиболее широкое применение нашли составы на основе брома и фтора. Галоидированные углеводороды и огнетушащие составы на их основе имеют высокую огнетушащую способность при сравнительно небольших расходах.

Читайте также:  Способ крепления потолочных люстр

Причем, прекращение горения достигается именно химическим путем, что подтверждается опытами. Если для прекращения горения разбавлением необходимо снизить концентрацию кислорода, то в данном случае она остается в пределах 20-20,6%, что явно достаточно для протекания реакции окисления.

Исследованиями последних лет установлено, что огнетушащие порошки, которые подаются в горящие объемы в виде аэрозоля (т.е. порошки не покрывают горящую поверхность, а облако из него окружает зону горения), прекращают горение также путем химического торможения.

Соли металлов, содержащиеся в порошке, вступают в реакцию с активными центрами. Соли металла в зоне реакции нагреваются до высокой температуры и переходят в жидкое состояние (возможно, частично испаряются). Остальная часть молекулы соли разлагается с образованием либо металла, либо окиси или гидрата металла.

Бромистый метилен CH2Br2 — жидкость плотностью 1732 кг/м 3 , плотность по воздуху примерно 60; температура замерзания -52,5°С, температура кипения +98°С, из 1 л жидкости получается около 350 л пара. Он хорошо смешивается с бромистым этилом и растворяет углекислоту.

Бромистый этил C2H5Br — ЛВЖ с характерным запахом; плотность 1455 кг/м 3 , плотность по воздуху примерно 4; температура замерзания -199°С, температура кипения +38.4°С. При объемной доле 6,5-11,3% в воздухе способен воспламеняться от мощного источника зажигания, поэтому в чистом виде не применяется. Из 1 л жидкости при испарении получается 400 л пара. Бромистый этил неэлектропроводен, плохо растворим в воде и образует с ней эмульсию. Обладает высокими коррозионными свойствами, особенно по отношению к алюминиевым сплавам.

Однако из-за высоких огнетушащих свойств он входит как основной компонент в огнетушащие составы, такие, как 3,5,4НД, БФ-1 и 2БМ. Бромистый этил обладает хорошей смачивающей способностью, составы на его основе можно использовать для тушения древесины, органических жидкостей, хлопка и других волокнистых материалов.

Тетрафтордибромэтан C2F4Br2 — жидкость плотностью 2175 кг/м 3 , температура замерзания -112°С, температура кипения +46,4°С, из 1 л жидкости получается около 254 л пара, который почти в 9 раз тяжелее воздуха (плотность по воздуху 8,96), токсичность и коррозионные свойства его паров значительно ниже, чем у паров бромистого этила.

На основе галоидированных углеводородов и углекислоты разработаны огнетушащие составы, компоненты которых приведены в (табл. 1).

Таблица 1

Составы Содержание компонентов, % по массе
C2H5Br СО2 (жидкость) C2F4Br2 CH2Br2
3,5 70 30
7 20 80
4НД 97 3
БФ-1 84 16
БФ-2 73 27
ТФ 100
БМ 70 3

Составы обладают свойствами компонентов их составляющих. Например, состав ТФ — это чистый тетрафтордибромэтан, или, как его нередко называют, фреон 114В2 или хладон. Состав 3,5 в 3,5 раза эффективнее диоксида углерода (отсюда и название состава). При нормальных условиях из 1 кг состава 3,5 образуется 144 л паров бромистого углерода. При тушении состав выбрасывается из насадки в виде распыленной струи жидкости, которая быстро испаряется. На открытых пожарах струя подается в зону горения на поверхность горящего материала; при тушении внутренних пожаров — в объем помещения.

Состав 7 по своим свойствам ближе к бромистому метилену. Из 1 л состава образуется 430,2 л паров (342,3 л бромистого метилена и 80,9 л бромистого этила).

Состав 4НД по свойствам почти не отличается от бромистого этила. Небольшое количество углекислоты вводится в качестве флегматизатора и для лучшего распыления.

Водобромэтиловая эмульсия состоит из 90% воды и 10% по массе бромистого этила. Для ее получения не требуется никаких дополнительных устройств. В бачок для пенообразователя заливается бромистый этил. С помощью стационарного пеносмесителя он вводится в воду, эмульсия подается через обычные стволы-распылители. Капли эмульсии, подаваемые в очаг пожара, имеют следующее строение — капелька бромэтила снаружи имеет водяную оболочку. Достигая зоны горения или попадая в нее, из-за низкой температуры кипения бромистый этил превращается в пар, разрывая при этом капли воды, делая воду мелкодисперсной. Горение прекращается как за счет разбавления горючих паров и газов водяным паром (мелкодисперсная вода почти полностью испаряется в зоне горения), так и химическим торможением реакции окисления. Время тушения эмульсией в 7-10 раз меньше по сравнению с водой, подаваемой из того же ствола-распылителя.

Галоидированные углеводороды эффективнее инертных газов. Например, тетрафтордибромэтан более чем в 10 раз эффективнее диоксида углерода и почти в 20 — водяного пара.

Благодаря высокой плотности паров и жидкостей возможна подача их в очаг пожаров в виде струй, проникновение капель в зону горения, а также удержание огнетушащих паров у очага горения. Галоидоуглеводороды и огнетушащие составы на их основе имеют низкую температуру замерзания, поэтому они могут быть эффективно применены в условиях низких температур, однако по экологическим условиям производство галоидированных углеводородов сокращается.

Интенсивность подачи и удельный расход огнетушащих веществ

Огнетушащие вещества имеют первостепенное значение в прекращении горения. Однако горение может быть ликвидировано лишь в том случае, когда для его прекращения подается определенное количество огнетушащего вещества.

В практических расчетах необходимого количества огнетушащего вещества для прекращения горения пользуются величиной интенсивности его подачи.

Под интенсивностью подачи огнетушащих веществ понимается их количество, подаваемое в единицу времени на единицу расчетного параметра пожара (площади, периметра, фронта или объема).

Различают: линейную; поверхностную; объемную интенсивности подачи. Они определяются опытным путем и расчетами при анализе потушенных пожаров.

Наиболее часто в расчетах используется поверхностная интенсивность подачи (по площади пожара). Некоторые значения требуемой интенсивности подачи огнетушащих веществ, которыми пользуются при расчетах сил и средств, приводятся ниже. Например, для воды, л/(с·м 2 ):

Административные здания 0,08-0,1
Жилые здания, гостиницы, здания II-1II степени огнестойкости 0,08-0,1
Животноводческие здания 0,1-0,2
Производственные цеха и помещения категорий А, Б, В 0,06-0,2

Это обобщенные цифры. В справочной литературе они даются конкретно для того или иного объекта. Обобщение сделано с целью демонстрации интервала разброса и необходимости учета конкретной обстановки.

В зависимости от вида пожара, способа прекращения горения расчет огнетушащих веществ производится на различные параметры пожара. Например, метр (м) периметра площади тушения или ее части (фронта, флангов и т.п.), метр квадратный (м 2 ) площади тушения, метр кубический (м 3 ) объема помещения, установки, здания, дебита газонефтяного фонтана и т.д. Такие параметры пожара называются расчетными.

Расход огнетушащего вещества на расчетный параметр пожара за все время тушения называется удельным расходом.

Удельный расход огнетушащего вещества является одним из основных параметров тушения пожара. Он зависит от физико-химических свойств пожарной нагрузки и огнетушащих веществ, коэффициента поверхности веществ пожарной нагрузки, удельных потерь огнетушащего вещества, которые происходят в процессе подачи его в зону горения и нахождения в ней.

Фактический удельный расход огнетушащего вещества в некоторой степени позволяет оценить деятельность РТП и подразделений по тушению пожаров в сравнении с подобными по виду и классу пожарами. Снижение удельного расхода служит одним из показателей успешного тушения пожара.

Фактический удельный расход огнетушащих веществ представляет собой сумму необходимого удельного расхода и его потерь.

Количество огнетушащего вещества, необходимое для прекращения горения на расчетном параметре пожара, при условии, что оно полностью расходуется на прекращение горения, называется необходимым удельным расходом.

На удельный расход влияет не только стадия развития пожара, свойства (природа) огнетушащего вещества, но и степень соприкосновения его с поверхностью горения.

В тех случаях, когда за расчетный параметр принимается площадь пожара, для более точного определения фактического удельного расхода вводится коэффициент поверхности горения.

Коэффициент поверхности твердых горючих материалов изменяется при изменении пожарной нагрузки прямо пропорционально. Следовательно, увеличивается и удельный расход огнетушащих веществ.

Кроме того, в реальных условиях процесс прекращения горения сопровождается сравнительно большими потерями огнетушащих веществ вследствие их разрушения и по другим причинам. Отношение фактического удельного расхода огнетушащего вещества к необходимому называется коэффициентом потерь.

Причинами потерь огнетушащих веществ могут быть отсутствие видимости зоны горения из-за задымления, воздействия высокой температуры как на огнетушащее вещество, так и на ствольщика, который не может приблизиться к зоне горения на необходимое для эффективной работы расстояние; отклонение струй огнетушащих веществ газовыми потоками или ветром, наличие в зоне горения скрытых поверхностей горючего материала от воздействия огнетушащего средства и т.п. Кроме того, потери огнетушащих веществ зависят от опыта работы ствольщика, вида и технического уровня средств подачи, оснащенности пожарных подразделений и др.

Анализ тушения пожаров показывает, что фактические удельные расходы воды при тушении пожаров в гражданских и промышленных зданиях колеблются в пределах 400-600 л/м 2 . Если подойти к определению необходимого удельного расхода воды с позиции теплового баланса на внутреннем пожаре и принять, что за время свободного развития пожара выгорает примерно до 50% пожарной нагрузки (типа древесины), то численное значение необходимого удельного расхода воды на охлаждение пожарной нагрузки, конструктивных элементов здания и нагретых газов составит 80-160 л/м 2 .

Фактический удельный расход огнетушащего вещества не применяется непосредственно для расчета сил и средств, а потребляемая для определения фактической интенсивности подачи огнетушащих веществ при исследовании пожаров и других необходимых случаях.

Интенсивность подачи огнетушащих веществ находится в функциональной зависимости от времени тушения пожара. Чем больше расчетное время тушения, тем меньше интенсивность подачи огнетушащих веществ и наоборот. Область интенсивности подачи от нижнего до верхнего пределов называется областью тушения. Все интенсивности, лежащие в этой области, могут применяться для тушения. Это дает возможность РТП широко маневрировать имеющимися у него в распоряжении силами и средствами пожаротушения. В справочной литературе требуемая интенсивность подачи огнетушащих веществ соответствует ее оптимальным значениям для тех или иных горючих веществ и материалов и называется нормативной или требуемой.

Требуемая интенсивность подачи огнетушащего вещества даже для одного и того же вида пожарной нагрузки изменяется в широких пределах и зависит от коэффициента поверхности горения, плотности самой пожарной нагрузки и др. Зависимость требуемой интенсивности подачи воды, например для тушения твердых горючих материалов, от интенсивности тепловыделения на пожаре приведена ниже:

Интенсивность тепловыделения, Q Вт/м 2 Требуемая интенсивность подачи воды, л/(с·м 2 )
0,14 0,05
0,29 0,10
0,58 0,20
1,06 0,40

РТП должен учитывать и тот факт, что на интенсивность подачи огнетушащих веществ оказывает влияние расположение пожарной нагрузки и по высоте помещения.

В практике пожаротушения целесообразно использовать такие интенсивности подачи огнетушащих веществ, которые могут быть реализованы существующими техническими средствами подачи и обеспечивают эффективность тушения с минимальными расходами огнетушащих веществ и за оптимальное время.

Источник

Оцените статью
Разные способы