Способ предотвращения кавитации насоса

Кавитация насосов и пути ее устранения

Пожалуй, главный источник проблем с насосами — кавитация. Физически это явление объясняется тем, что в жидкости всегда присутствует какое-то количество растворенного газа. При движении жидкости в ней могут возникать зоны разрежения. В результате выделяются пузыри. Попадая с потоком в зону более высоких давлений, пузыри схлопываются, выделяя энергию, которая разрушает поверхность рабочих колес, улиток (рис. 1.) и т.д.
Рис. 1. Кавитация улитки после года работы насоса.
Эта энергия также создает ударные волны, вызывающие вибрацию, распространяющуюся на рабочее колесо, вал, уплотнения, подшипники, повышая их износ. Возникновение кавитации обусловлено разными причинами (табл. 1.) Любой вид кавитации связан с неучетом важных правил гидравлики и гидродинамики.

Каждый насос характеризуется величиной кавитационного запаса ∆hтр, обозначаемой западными насосными фирмами NPSHR. Это то минимальное давление, в пределах которого у жидкости, попадающей в насос, сохраняется состояние собственно жидкости. Величину ∆hтр в номинале и кривую зависимости ∆hтр от подачи/напора обязан предоставлять производитель насоса.

Насос в станцию необходимо подбирать, устанавливать и обвязывать так, чтобы он располагал в зоне своей работы (определяется наложением характеристик насосов и системы водоводов) тем допустимым кавитационным запасом ∆hдоп (или NPSHA), величина которого была бы выше ∆hтр (NPSHA > NPSHR).

Иными словами ∆hдоп – есть потенциальная энергия жидкости у всасывающего отверстия насоса ∆hдоп = Ha + Hs – Hvp -Hf -Hi, где Ha — атмосферное давление (10 м водного столба на уровне моря); Hs — статический напор (положительный или отрицательный), определяемый как разность уровней между свободной поверхностью жидкости и осью насоса, м; Hvp — давление паров перекачиваемой жидкости, зависящее от температуры, м; Hf — потери на трение во всасывающей линии, м; Hi — потери в пространстве между горловиной и головкой рабочего колеса насоса (если неизвестны, можно принять [1] равными 0,6 м).

Пример. Нужно определить геометрическую высоту всасывания Но (рис 2) для насоса с ∆hтр = 7,0 м.

Расчетом из таблиц получаем потери: на входе в насос Hi = 0,6 м; на трение во всасывающей линии Hf = 0,3 м; на задвижке Нv = 0,1 м; на конфузоре Нк = 0,1 м; давление насыщенных паров Hvp = 0,2 м. Величина Но равна Hs со знаком минус.

Для получения искомой Но применим систему из трех уравнений.
∆hдоп = 1,1 ∆hтр,(4.1), где 1,1 – коэффициент запаса, принимаемый в зависимости от условий работы насоса 1,1 – 1,5 [1].
Но = — Hs,(4.2) так как уровень воды отрицательный по отношению к оси насоса.
∆hдоп = Ha + Hs — Hvp — Нк — Нv — Hf -Hi (4.3)
Отсюда Но = -(1,1 ∆hтр — Ha + Hvp + Нк + Нv + Hf +Hi ) или
Но = -(1,1 * 7,0 – 10 + 0,2 +0,1 + 0,1 + 0,3 + 0,6) = -(-1,0) = 1 м.

Требуемый кавитационный запас ΔhTP обычно вычисляют по характеристике, представляемой производителем насоса. Кривая ΔhTP начинается с точки нулевой подачи и медленно растет с увеличением. Когда подача превышает точку наибольшего КПД насоса кривая ΔhTP резко возрастает, по экспоненте. Зона справа от точки максимального КПД обычно является кавитационно опасной. Кавитационный запас не поддается контролю с точки зрения механики, и оператор насосной станции (особенно если он не ознакомлен с характеристиками насосов) улавливает по металлическому шуму и щелчкам уже развитую кавитацию. К сожалению, на рынке слишком мало приборов, позволяющих наблюдать и предотвращать кавитацию. Хотя датчик давления всасывающей стороне насоса, подающий сигнал тревоги при падении давления ниже допустимого для конкретного агрегата, мог бы и должен бы применяться повсеместно.

Читайте также:  Способы проведения урока физическая культура

Многие операторы знают, что звук пропадает после прикрытия задвижки. Но, снижая тем самым подачу и кавитацию, можно не достичь технологических параметров производственного процесса или водоснабжения/водоотведения. Для того, чтобы правильно устранить кавитацию нужно использовать принцип – на входе в насос должно всегда быть жидкости больше, чем на выходе. Вот несколько простых способов как этого достичь:
— замените диаметр всасывающего патрубка на больший;
— переместите насос ближе к питающему резервуару, но не ближе 5-10 диаметров всасывающей трубы;
— понизьте сопротивление во всасывающей трубе, заменой ее материала на менее шероховатый, задвижки на шиберную, характеризующуюся меньшими местными потерями, удалением обратного клапана;
— если всасывающая труба имеет повороты, уменьшите их количество и (или) замените отводы малых на большие радиусы поворота, сориентировав их в одной плоскости (иногда правильно заменить жесткую трубу гибкой);
— увеличьте давление на всасывающей стороне насоса повышением уровня в питающем резервуаре либо снижением оси установки насоса, либо использованием бустерного насоса.

Изложенные способы просты и понятны любому специалисту, но. Рассматриваю недавно проект выполненный авторитетной, проектной организацией и обнаруживаю, что насосы с подачей 1400 м 3 /ч оборудованы задвижками (рис. 3) диаметрами 400 мм с напорной и 300 мм со всасывающей стороны (!?) «Вы перепутали диаметры» – говорю – «Не может насос, изготавливаемый солидной европейской фирмой, быть выполнен вопреки классическому правилу: всасывающий патрубок должен быть больше напорного!»

Рис. 3. Пример неверной обвязки насос насоса. Диаметр всасывающего патрубка меньше чем напорного.

Оказалось, что патрубки имеют одинаковые диаметры по 300мм. Чем руководствуется насосная фирма догадаться не трудно. С подходящим под данную подачу всасывающим патрубком Ø400 или Ø500 возросли бы размер улитки и цена. Но, если бы проектировщик подсчитал получаемые скорости на входе в насос 5,5 м/с, а за насосом 3,1 м/с, то смог бы убедить заказчика отказаться от насоса, способного кавитировать, хотя и менее дорогого.

В насосной станции смонтированы агрегаты сухой горизонтальной установки выше уровня воды в приемном резервуаре на 2,8м. Их номинальные параметры: Q=3500 м 3 /ч, Н=26м, ∆hтр(NPSHR)=7.7м. Насосы кавитируют. Реально они работают в точке Q=3900 м 3 /ч, Н=24м, где ∆hтр(NPSHR)=8,6м. Диапазон производительности насосной станции 6 000-10 000 м3/ч.

С помощью формулы (4.3) этого параграфа подсчитываем ∆hдоп(NPSHA)=5.8м. Отсюда ∆hдоп 3 /ч, при котором ∆hтр=3,8м 3 /ч. Строим графики совместной работы трех насосов с тремя клапанами и трубопроводов (рис 4). Три насоса справляются с минимальным притоком 6000 м 3 /ч.

Вариант 2 (с бустерным насосом).
Из предыдущих расчетов видно, что недостаток напора на всасывающей стороне насоса составляет 3,7 м. Наиболее просто монтируемыми и подходящими для значительных объемов на небольшую высоту являются насосы с осевыми или диагональными рабочими колесами (рис 4,5). Такие агрегаты устанавливаются непосредственно в нагнетательную колонну (в данном случае открытую). Подбираем насос с номинальными параметрами Q=3000 м 3 /ч, Н=5,5 м, КПД=83%. Строим характеристики работы пары последовательно соединенных насосов (рис. 6) и трех пар последовательно – параллельно соединенных насосов (рис. 7) совместно с водоводом.

Читайте также:  Сирдалуд таблетки способ применения

Рисунок 4. Графики совместной работы 3-х насосов с регулируемыми клапанами (или одним клапаном на гребенку) и водоводов.

1,2,3-графики одно, двух и трех параллельно работающих насосов соответственно. 4,5,6-графики водоводов с редукционными клапанами (клапаном), поддерживающим давление в системе 3,5 бар при работе одного, 2-х и 3-х насосов соответственно 7-характеристика водовода без дросселирования.

Рис. 5 Погружной осевой насос 1, создающий подпор насосу сухой установки 2.

Пуск существующего насоса осуществляется с задержкой, после того как осевой бустерный агрегат наполнит колонну водой до возможного излива.
Анализ характеристик показывает:
Подача бустерного агрегата (рис. 6) в рабочем диапазоне выше, чем у существующего, что обеспечило стабильный подпор последнему.

Рис. 6 Графики работы последовательно соединенных насосов и водовода

1-характеристика насоса сухой установки 2-совместная характеристика последовательно работающих насосов 3-характеристика водовода.

Рабочая точка двух пар параллельно действующих насосов (рис. 7) соответствует Q=7200 м 3 /ч, Н=30м и находится в зоне оптимума обоих агрегатов.

Рис. 7. График параллельной работы трех пар последовательно соединенных насосов и водовода

1,2,3-графики работы одной, 2-х, 3-х пар последовательно соединенных насосов, соответственно 4-характеристика водовода.
Требуемый кавитационный запас существующих насосов сухой установки в этой точке ∆hтр=6м
Подсчитываем располагаемый кавитационный запас формуле (4,3):
∆hдоп=10+2,0-0,2-0,2-0,1-0,3-0,6=10,6 м
Отсюда ∆hдоп=10,6>1,1∆hтр=6,6м
Угрозы кавитации нет.

Энергетические затраты по вариантам показывают явное преимущество в использовании бустерных насосов, а денежная разность их (2081 272 руб) сравнима с закупочной ценой за агрегат.
Кроме того установка редукционного клапана не исключит проблем:
Наличие воздуха во всасывающем трубопроводе, следовательно, неустойчивой работы насосов;
Уменьшения ресурса работы подшипниковых узлов и уплотнений (при подаче 2000 м3/чач насос работает на границе ограничения по Qmin, с повышенными осевыми и радиальными силами)
Таким образом, можно оценить целесообразность и эффективность мероприятий по устранению кавитации.

Список литературы:
[1] Bachus L, Custodio A. Know and Understand Centrifugal Pumps.
Elsevier, Oxford, 2003.

Березин С.Е.
ЗАО «Водоснабжение и водоотведение», Москва, Россия

Источник

Способы борьбы с кавитацией

Основным способом борьбы с кавитацией является максимальное снижение разрежения в зонах возможной кавитации, которое частично может быть достигнуто за счет повышения окружающего давления. В частности, в борьбе с кавитацией во всасывающей камере насосов основным является обеспечение на всасывании такого давления, которое способно было бы преодолеть без разрыва потока жидкости гидравлические потери во всасывающей магистрали и в самой камере всасывания, включая сопротивление, обусловленное инерцией жидкости.

Очевидно, что для того, чтобы жидкость развила в рабочей камере насоса (в цилиндре и пр.) необходимое ускорение, требуемое для предотвращения отрыва ее от всасывающего элемента (поршня и пр.), к ней необходимо приложить соответствующее давление. Сила Р инерции жидкости при этом определится так:

где m – масса рассматриваемого объекта движущейся жидкости;

j – максимальное ее ускорение.

Для преодоления этой силы на входе во всасывающую камеру насоса должно действовать давление , где F – сечение потока.

Повышение давления достигается наддувом бака гидросистемы газом (поддавливанием), а также установкой подкачивающих насосов, эжекторов и прочими средствами.

В общем случае условие бескавитационной работы насоса можно выразить уравнением

где Рб – давление в жидкостном баке, питающем насос;

h – разность между уровнем жидкости в баке и выходным штуцером насоса;

Читайте также:  Способы получения синильной кислоты

Σрn – сумма потерь напора во всасывающей магистрали;

Рi – потеря напора, обусловленная ускорением жидкости во всасывающих каналах насоса и подводящем трубопроводе;

uвх– скорость жидкости во входном окне (канале) насоса;

γ – объемный вес жидкости;

Рк – критическое давление, при котором наступает активное выделение из жидкости пузырьков воздуха; это давление зависит от вязкости жидкости и ее температуры, а также от степени насыщения жидкости воздухом.

Ввиду трудности вычисления величины инерционной потери-напора рi она обычно учитывается запасом ра, значение которого обычно принимается для распространенных насосов и режимов их работы равным 300—400 мм рт. ст.

С целью снижения потерь напора во всасывающем трубопроводе необходимо устанавливать насос как можно ближе к питающему баку и ниже уровня жидкости в нем, а также увеличивать сечение трубопровода и уменьшать количество местных гидравлических сопротивлений на пути течения жидкости от бака к насосу.

Для обеспечения бескавитационных условий работы насосов применяют также различные конструктивные усовершенствования. Одним из радикальных способов борьбы с кавитацией в насосах является повышение давления на входе в насос, достигаемое применением вспомогательных насосов для подкачки или искусственного наддува газом жидкостных резервуаров, а также применением прочих средств, одним из которых является использование энергии потока жидкости в сливной магистрали гидросистемы с помощью эжекторов (рис. 21).

Рис. 21. Расчетная схема эжектора

Расчет эжектора (при q = Q1/Q2 = 0 ÷ 1,5) обычно производят по эмпирической формуле (без учета потерь)

где q = Q2/Q1 – коэффициент смешения жидкостей (Q1 и Q2 – объемный расход эжектирующей и эжектируемой жидкости);

Δh – разность давлений в смесительной камере а и на выходе из диффузора b, в мм рт. ст.;

– скоростной напор эжектируемого потока в мм. рт. ст.;

u1 – скорость эжектируемого потока в м/сек;

– коэффициент, характеризующий отношение площади F0 сечения смесительного трубопровода к площади F1 сечения сопла нам выходе.

Длина смесительного трубопровода принимается равной (8 ÷ 10)d. При предварительных расчетах пользуются также упрощенной эмпирической формулой

Для уменьшения действия кавитации применяют коррозионно-стойкие материалы (стали с добавкой хрома и никеля) при одновременной тщательной обработке их поверхностей, омываемых кавитируемой жидкостью. Применяют также покрытия деталей материалом, стойким против кавитационного разрушения (бронзой, хромом и пр.).

Как правило, стойкость материалов кавитационному разрушению повышается с увеличением механической и химической (окислительной) стойкости, причем лучшие результаты дают материалы, в которых совмещаются оба эти качества. Наименьшую стойкость имеют чугун и углеродистая сталь и наибольшую стойкость — бронза и нержавеющая сталь. Наиболее стойким из известных материалов является титан.

Увеличение твердости материала повышает, как правило, антикавитационную стойкость. Так, например, увеличение твердости нержавеющей стали от НВ 150 до НВ 400—420 повышает ее антикавитационную стойкость в 10 раз и более. Увеличением твердости можно также несколько повысить антикавитационную стойкость углеродистых сталей, однако детали из этих сталей не могут обеспечить приемлемый ресурс времени при возможных твердостях.

Полностью устранить разрушительное действие кавитации путем применения стойких против коррозии материалов не представляется возможным. Разрушению, хотя и менее интенсивному, подвергаются при известных условиях детали из таких материалов как стекло, золото и пр., что свидетельствует о преобладании в рассматриваемом процессе их разрушения механических факторов.

Источник

Оцените статью
Разные способы