Способ предоставления информации число

Способ предоставления информации число

Виды информации. Представление информации.

По способу восприятия информации человеком можно выделить визуальную (зрительную), аудиальную (звуковую), обонятельную (запахи) вкусовую, тактильную (осязательную), вестибулярную и мышечную информацию (рис.3).

Визуальную информацию люди воспринимают с помощью глаз. Человек может увидеть объект или явление, букву или цифру, картину или фильм, схему или карту, жест или танец. Аудиальную информацию люди воспринимают с помощью ушей. Человек может услышать произвольные звуки, шум, музыку, пение и речь. Обонятельную информацию, или запахи, человек воспринимает с помощью носа. Запах можно охарактеризовать как терпкий или пряный, приятный или неприятный, тяжелый или легкий. Вкусовую информацию человек воспринимает с помощью языка. Вкус может быть горький или сладкий, кислый или соленый. Тактильную информацию человек воспринимает кожей. Прикасаясь к предмету, можно определить его температуру (холодный или горячий) и вид поверхности (гладкая или шероховатая, мокрая или сухая). Вестибулярную информацию человек воспринимает с помощью вестибулярного аппарата, который отслеживает положение тела человека в трехмерном пространстве. Летя в самолете и не видя горизонта, человек может определить, куда и как он перемещается: вверх или вниз, вправо или влево, ускоренно или замедленно. Мышечную информацию люди воспринимают с помощью мышц. Закрыв глаза, человек не пронесет ложку с супом мимо своего рта, может дотронуться указательным пальцем до своего носа, сравнить массу гирь, одинаковых на ощупь.

Воспринимать информацию могут не только люди, но и животные, и растения. Однако в отличие от людей, восприятие информации животными и растениями имеет свои особенности. Например, слоны способны воспринимать звуки, которые не слышит человек, у собак лучше всего развито обоняние, у летучих мышей – слух, а растения могут получать информацию с помощью корней и листьев. Несмотря на эти особенности, в живой природе, так же как и в мире людей, информация играет важную роль в обеспечении жизненных процессов. Воспринимаемую с помощью органов чувств информацию человек стремится выразить так, чтобы она была понятна другим. Одну и ту же информацию, в зависимости от цели деятельности, можно выразить разными способами и представить в разной форме.

По форме представления принято выделять числовую, текстовую, графическую, звуковую и комбинированную информацию (рис. 4).

Рис. 4. Виды информации по форме представления

Например, если человек хочет выучить слова песни наизусть, то, скорее всего, он запишет стихи с помощью букв. В этом случае информация будет представлена в текстовой форме. Запомнить мелодию песни позволит прослушивание этой песни в исполнении певца или музыканта. В этом случае информация будет представлена в звуковой форме. Образ, навеянный стихами или мелодией, можно изобразить в графической форме с помощью рисунка.

Для того чтобы выяснить количество поклонников исполнителя песни, необходимо их подсчитать и результат представить в числовой форме. Каждая из этих форм представления информации имеет свои особенности. Графическая информация наиболее доступна, так как срезу передает визуальный образ.

Читайте также:  Алгоритм решения квадратных неравенств графическим способом

С помощью текстовой и звуковой информации можно представить исчерпывающие разъяснения. Числовая информация дает возможность проводить различные сравнения и вычисления. Поэтому чаще всего информацию представляют в комбинированной форме. Частным случаем комбинированной информации является мультимедийная информация , когда текстовая и числовая информация сочетается со звуковой и графической информацией, с видеоизображением .

Для представления информации человек использует различные знаки. Один и тот же знак может иметь разный смысл. Если человек наделил знак смыслом, то этот знак называют символом

Например, нарисованный овал может означать или букву «О», или цифру ноль, или химический элемент кислород, или геометрическую фигуру. В нашем примере нарисованный овал – это знак. Буква, цифра и обозначение химического элемента являются символами.

Для того чтобы понимать смысл информации, представленной с помощью символов, человеку необходимо знать не только символы, но и правила составления сообщений из этих символов. Говоря другими словами, человеку необходимо знать язык. Язык может быть разговорным, языком рисунков, мимики и жестов, языком науки и искусства.

Выделяют естественные (разговорные) и искусственные языки (рис. 5).

Естественные языки исторически сложились в процессе развития человеческой цивилизации. К естественным языкам относятся русский, английский, китайский и многие другие языки. В мире насчитывается более 10 тыс. разных языков, диалектов и наречий.

Искусственные языки специально созданы для профессионального применения в какой-либо области человеческой деятельности. Некоторые искусственные языки складывались в течение длительного исторического периода, например язык математических обозначений. С этой точки зрения они мало отличаются от естественных языков. Примерами искусственных языков являются эсперанто, языки программирования, язык математики, язык химии, язык логики, язык флажков на флоте, язык дорожных знаков.

Некоторые естественные языки имеют искусственно созданные алфавиты. Так, например, авторами русского языка являются Кирилл и Мефодий.

Представление информации с помощью определенного языка всегда связано с алфавитом. Алфавит содержит конечный набор символов, из которых можно составить как угодно много слов. Все символы в алфавите упорядочены.

Количество символов в алфавите называют мощность алфавита.

Представленную информацию можно преобразовать из одной последовательности знаков в другую, не задумываясь о смысле сообщения. Такой процесс преобразования сообщения называется кодированием. Обратный процессом кодированию является процесс декодирования. Для того чтобы выполнить кодирование или декодирование, необходимо знать правила перевода одних знаков в другие знаки. Говоря другими словами, надо знать код или шифр.

По мере развития средств появились различные способы кодирования информации. Например, кодирование с помощью азбуки (кода) Морзе (длительный сигнал – тире, короткий сигнал – точка, нет сигнала – пауза), с помощью двоичного кода (нет сигнала – 0, есть сигнал – 1). Кодирование используется для представления информации в такой форме, которая будет наиболее удобна для работы человека или технического устройства. Например, человеку удобно и привычно работать с десятичными числами, а компьютер настроен на работу с двоичными числами. Поэтому десятичное число, введенное с помощью клавиатуры компьютера, кодируется в двоичное число. При выводе числа на экран монитора происходит декодирование из двоичного числа в десятичное число. Кодирование информации необходимо не только для ее рационального представления, но и для ее эффективной защиты. Не случайно другим примером кода является пин-код сотового телефона или банковской карточки, а также код, используемый в качестве ключа от цифрового замка дорожной сумки.

Читайте также:  Способы передачи вируса гриппа

Источник

Способ предоставления информации число

Электронные облака

Лекции

Рабочие материалы

Тесты по темам

Template tips

Задачи

Логика вычислительной техники и программирования

Лекция «Представление информации в компьютере. Структура внутренней памяти.»

Основные понятия: бит, байт, дискретность, отрицательные числа, дополнительный код, двоичные и шестнадцатеричные числа, целые и вещественные числа, мантисса, машинный порядок, нормализованное представление, машинное слово, адресуемость.

Биты и байты

Написание программ требует знаний организации всей системы компьютера. В основе компьютера лежат понятия бита и байта. Они являются тем средством, благодаря которым в компьютерной памяти представлены данные и команды.

Для выполнения программ компьютер временно записывает программу и данные в основную память. Компьютер имеет также ряд pегистров, которые он использует для временных вычислений.

Минимальной единицей информации в компьютере является бит.

Бит – ячейка памяти, хранящая один двоичный знак. Битовая структура памяти определяет первое свойство памяти – дискретность.

Бит может быть выключен, так что его значение есть нуль, или включен, тогда его значение равно единице. Единственный бит не может представить много информации в отличие от группы битов.

Байт — восемь расположенных подряд битов памяти.

Во внутренней памяти компьютера все байты пронумерованы. Нумерация начинается с нуля. Порядковый номер называется его адресом. В компьютере адреса обозначаются двоичным кодом. Используется также шестнадцатеричная форма обозначения адреса.

Двоичные числа

Так как компьютер может различить только нулевое и единичное состояние бита, то он работает системе исчисления с базой 2 или в двоичной системе. Фактически бит унаследовал свое название от английского «BInary digiT» (двоичная цифра).

Сочетанием двоичных цифр (битов) можно представить любое значение. Значение двоичного числа определяется относительной позицией каждого бита и наличием единичных битов. Ниже показано восьмибитовое число, содержащее все единичные биты:

Позиционные веса 128 64 32 16 8 4 2 1
Включенные биты 1 1 1 1 1 1 1 1

Двоичное число не ограничено только восемью битами. Если процессор использует 16-битовую архитектуру, он автоматически оперирует с 16-битовыми числами (2 в степени 16 минус 1 дает значение 65535), а для 32 бит — 4294967295 (2 в степени 32 минус 1) и так далее.

Двоичное сложение

Микрокомпьютер выполняет арифметические действия только в двоичном формате.

0 + 0 = 0
1 + 0 = 1
1 + 1 = 10
1 + 1 + 1 = 11

Обратите внимание на перенос единичного бита в последних двух операциях. Теперь, давайте сложим 01000001 и 00101010.(число 65 и число 42):

Двоичные Десятичные
01000001 65
00101010 42
01101011 107

Проверьте, что двоичная сумма 01101011 действительно равна 107. Рассмотрим другой пример:

Двоичные Десятичные
00111100 60
00110101 53
01110001 113

Представление целых чисел

Множество целых чисел, представимых в памяти ЭВМ, ограничено. Диапазон значений зависит от размера ячеек памяти, используемых для их хранения. В k-разрядной ячейке может храниться 2 k различных значений целых чисел.

Чтобы получить внутреннее представление целого положительного числа N, хранящегося в k-разрядном машинном слове, необходимо:

1) перевести число N в двоичную систему счисления;
2) полученный результат дополнить слева незначащими нулями до k разрядов

Отрицательные числа

Для записи внутреннего представления целого отрицательного числа (-N) необходимо:

1) получить внутреннее представление положительного числа N;
2) получить обратный код этого числа заменой 0 на 1 и 1на 0;
3) к полученному числу прибавить 1.

Читайте также:  Приведите сравнительную характеристику способам разливки стали

Данная форма представления целого отрицательного числа называется дополнительным кодом. Использование дополнительного кода позволяет заменить операцию вычитания на операцию сложения уменьшаемого числа с дополнительным кодом вычитаемого.

Двоичные разряды в ячейке памяти нумеруются от 0 до k справа налево. Старший, k-й разряд во внутреннем представлении любого положительного числа равен нулю, отрицательного числа – единице. Поэтому этот разряд называется знаковым разрядом.

Для представления отрицательного двоичного числа необходимо инвертировать все биты и прибавить 1. Рассмотрим пример:

Число 65 01000001
Инверсия 10111110
Плюс 1 10111111 (равно -65)

Сумма +65 и -65 должна составить ноль:

01000001 (+65)
10111111 (-65)
(1)00000000 0

Все восемь бит имеют нулевое значение. Перенос единичного бита влево потерян. Однако, если был перенос в знаковый разряд и из разрядной сетки, то результат является корректным.

Двоичное вычитание выполняется просто: инвертируется знак вычитаемого и складываются два числа. Вычтем, например, 42 из 65. Двоичное представление для 42 есть 00101010, и его двоичное дополнение: — 11010110:

65 01000001
+(-42) 11010110
23 (i)00010111

Результат 23 является корректным. В рассмотренном примере произошел перенос в знаковый разряд и из разрядной сетки.

Если справедливость двоичного дополнения не сразу понятна, рассмотрим следующие задачи: Какое значение необходимо прибавить к двоичному числу 00000001, чтобы получить число 00000000? В терминах десятичного исчисления ответом будет -1. Для двоичного рассмотрим 11111111:

00000001
11111111
Результат (1)00000000

Игнорируя перенос (1), можно видеть, что двоичное число 11111111 эквивалентно десятичному -1 и соответственно:

0 00000000
-(+1) -00000001
-1 11111111

Можно видеть также, каким образом двоичными числами представлены уменьшающиеся числа:

+3 00000011
+2 00000010
+1 00000001
0 00000000
-1 11111111
-2 11111110
-3 11111101

Фактически нулевые биты в отрицательном двоичном числе определяют его величину: рассмотрите позиционные значения нулевых битов как если это были единичные биты, сложите эти значения и прибавьте единицу.

Шестнадцатеричное представление

Представим, что необходимо просмотреть содержимое некоторых байт в памяти. Требуется определить содержимое четырех последовательных байт (двух слов), которые имеют двоичные значения. Так как четыре байта включают в себя 32 бита, то специалисты разработали «стенографический» метод представления двоичных данных. По этому методу каждый байт делится пополам и каждые полбайта выражаются соответствующим значением. рассмотрим следующие четыре байта:

Двоичное 0101 1001 001 0101 1011 1001 110 1110
Десятичное 5 9 3 5 11 9 12 14

Так как здесь для некоторых чисел требуется две цифры, расширим систему счисления так, чтобы 10=A, 11=B, 12=C, 13=D, 14=E, 15=F. Таким образом, получим более сокращенную форму, которая представляет содержимое вышеуказанных байт:

59 35 B9 CE

Такая система счисления включает «цифры» от 0 до F, и так как таких цифр 16, она называется шестнадцатеричным представлением.

Шестнадцатеричный формат нашел большое применение в языке ассемблера.

Если немного поработать с шестнадцатеричным форматом, то можно быстро привыкнуть к нему.

Следует помнить, что после шестнадцатеричного числа F следует шестнадцатеричное 10, что равно десятичному числу 16.

Заметьте также, что шестнадцатеричное 20 эквивалентно десятичному 32, шест. 100 -десятичному 256.

Машинное слово

Вся информация (данные) представлена в виде двоичных кодов. Для удобства работы введены следующие термины, обозначающие совокупности двоичных разрядов (см. табл.). Эти термины обычно используются в качестве единиц измерения объемов информации, хранимой или обрабатываемой в компьютере.

Источник

Оцените статью
Разные способы