Способ пожаротушения по площади

Содержание
  1. Установки тушения пожаров: по способу тушения
  2. Объемное тушение
  3. Поверхностное тушение
  4. Локально-объемное тушение
  5. Локально-поверхностное тушение
  6. Методика проведения пожарно-тактических расчетов
  7. Методика и формулы расчета сил и средств для тушения пожара
  8. Расчет сил и средств для тушения пожаров твердых горючих веществ и материалов водой (распространяющийся пожар)
  9. Расчет сил и средств для тушения пожаров воздушно-механической пеной на площади
  10. Тушение пожаров в помещениях воздушно-механической пеной по объему
  11. Пропускная способность рукавов
  12. Тактико-технические показатели приборов подачи пены
  13. Линейная скорость выгорания и прогрева углеводородных жидкостей
  14. Изменения и дополнения в Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках
  15. Основные показатели, характеризующих тактические возможности пожарных подразделений
  16. Определение тактических возможностей подразделения без установки пожарного автомобиля на водоисточник
  17. Примеры решения задач
  18. Определение тактических возможностей подразделения с установкой пожарного автомобиля на водоисточник
  19. Примеры решения задач
  20. Организация бесперебойной подачи воды
  21. Методика расчета потребного количества пожарных автомобилей для перекачки воды к месту тушения пожара
  22. Методика расчета потребного количества пожарных автомобилей для подвоза воды к месту тушения пожара
  23. Методика расчета подачи воды к месту тушения пожара с помощью гидроэлеваторных систем
  24. Примеры решения задач с использование гидроэлеваторных систем

Установки тушения пожаров: по способу тушения

Когда речь идет о стационарных системах пожаротушения, то обычно во главу угла ставится вопрос об огнетушащих веществах, их смесях или более сложных составах, используемых в водяных, аэрозольных, порошковых, пенных, газовых установках пожаротушения. Да, это крайне важный момент, прежде всего потому, что далеко не все локализующие, ликвидирующие очаги открытого огня виды АУПТ могут справиться с тлением; а также их подача в зону горения может привести к весьма негативным последствиям – взрыву при соприкосновении с активными металлами, дальнейшему распространению пожара.

Дополнительная информация про системы (установки) пожаротушения каждого вида:

Но, не менее сложный момент в том, каким способом/методом система пожаротушения борется с огнем в защищаемом помещении, т.е. постепенно сбивает пламя с поверхности, подобно водяным, воздушно-пенным, воздушно-эмульсионным огнетушителям; или ликвидирует его во всем объеме зоны горения, как углекислотные, хладоновые, порошковые ручные/переносные, передвижные/возимые устройства пожаротушения.

Подробнее про каждый вид огнетушителя и классификацию: читайте по ссылке

Чтобы понять, стоит разобраться в том какие системы и установки тушения пожаров относятся к объемным, а какие к поверхностным по способу локализации/ликвидации очага пожара; и могут ли сочетаться эти способы для разных видов автоматического оборудования.

Объемное тушение

Прежде всего необходимо обратиться к государственной нормативно-технической базе по ПБ. Так, в ст. 45 «Технического регламента о требованиях ПБ» (Федерального закона РФ № 123-ФЗ в редакции от июля 2017), устанавливающей квалификацию установок пожаротушения, указано, что все стационарные установки тушения пожара, независимо от того, в каком режиме работают – в автоматическом/автоматизированном, в автономном или ручного пуска; а также вида используемого огнетушащего вещества, относятся к одному из типов по способу пожаротушения – к объемным, поверхностным, локально-объемным или локально-поверхностным.

И также указывается, что все буквально – от типов установок ликвидации/локализации очагов открытого огня/тления, видов огнегасящих веществ до способов тушения определяется специалистами проектных организаций, разрабатывающих рабочую документацию систем АУПТ; с учетом, того чтобы при этом жестко выполнялись следующие условия:

  • Применялись/реализовывались современные эффективные технологии пожаротушения с оптимальной инерционностью, минимальным вредным воздействием на защищаемое оборудование, отделку, обстановку помещений; товароматериальные ценности, находящиеся в них.
  • Побудительная система АПС с различными, в т.ч. комбинированными пожарными извещателями, входящая в их состав, должна обеспечить срабатывание установок за время, не превышающее критический период начальной стадии развития очага пожара.
  • Обязательно обеспечивалась необходимая интенсивность орошения/расход огнегасящего агента на единицу площади/объема – воды, пены/порошка, газа, аэрозоля.
  • Локализация развития пожара до прибытия пожарных подразделений или его полная ликвидация.
  • Надежность функционирования оборудования установок автоматического пожаротушения.

Возможные варианты способа пожаротушения, подходящего по нормам для выбранного вида огнетушащих веществ, смесей/составов, выбирают по данным НПБ 88-2001*, устанавливающих правила проектирования установок АПС/систем АУПТ; исходя из следующего:

  • При объемном способе пожаротушения обеспечивается создание среды, не поддерживающей реакцию/процесс горения во всем пространстве/объеме помещения здания или сооружения, которое защищает данная АУПТ.
  • При поверхностном способе пожаротушения огнетушащее вещество непосредственно воздействует на плоскость/отметку пола, розлива ЛВЖ/ГЖ; верхний ряд товароматериальных ценностей, расположенных, складированных на стеллажах, поддонах, в штабелях хранения; на корпуса технологических установок, аппаратов.
  • Локально-объемные АУПТ действуют огнетушащим составом только на некоторую часть объема защищаемого помещения и/или на одну технологическую установку, аппарат или комплекс оборудования.
  • Локально-поверхностные установки воздействуют ОТВ только на определенную площадь помещения, а также обвалования вокруг одной единицы технологического оборудования, в т.ч. на нее.

К объемным по способу тушения относятся следующие виды/типы АУПТ:

  • Пенные установки пожаротушения, генерирующие пену средней или высокой кратности.
  • Установки газового пожаротушения, независимо от типа огнетушащего вещества в них.
  • Порошковые установки пожаротушения с порошком общего назначения в качестве огнегасящего агента.
  • Автоматические установки с огнетушащим аэрозолем.
  • Комбинированные установки пожаротушения, предназначенные для тушения по объему.

Информация по каждому виду установок тушения пожаров приводится в начале статьи по ссылкам.

Все они в состоянии за требуемый нормами, подтвержденный расчетами, натурными испытаниями и опытом использования период заполнить ОТВ весь объем защищаемых объектов, тем самым прекратив в них процесс горения. Такой способ пожаротушения в том числе эффективен при борьбе с очагами пожаров в производственных участках, цехах, технологических сооружениях промышленных предприятий, имеющих категорию по взрывопожарной опасности А, Б.

При выборе объемного способа пожаротушения, проектировании АУПТ следует учитывать, что его рекомендовано использовать в тех случаях/ситуациях в защищаемых помещениях, зданиях или технологических/инженерных сооружениях, когда несущие конструкции зданий, внутренние ограждающие элементы – перекрытия, этажерки, галереи, переходы/трапы, лестницы; а также установленное в них технологическое, складское оборудование довольно на большой суммарной площади полностью или частично экранирует возможность подачи выбранных видов огнетушащих веществ без потерь непосредственно на горящую поверхность очага пожара.

Поверхностное тушение

К ним прежде всего относятся водяные установки пожаротушения, смонтированные внутри общественных, зданий сооружений, производственных участков, цехов промышленных установок. Установленные на их распределительных трубопроводах спринклерные, дренчерные оросители обеспечивают только поверхностное покрытие всей площади защищаемого помещения.

Это вызвано тем, что вырабатываемые такими АУПТ немалые количества воды со специальными добавками или без них в силу ее физико-химических свойств, размера, образовавшихся в результате распыления капель, очень быстро под воздействием земного притяжения оказываются на поверхности пола этажа, отметки здания, технологического сооружения; не в состоянии успеть распределиться по всему объему/пространству защищаемого помещения.

Точно так же ведет себя пена низкой/средней кратности, генерируемая пенными установками пожаротушения, предназначенными для тушения производственных, складских площадей, в т.ч. высотных стеллажных конструкций, возможного розлива горючих жидкостей внутри обвалования, приямков вокруг технологических аппаратов, установок, находящихся внутри защищаемых зданий, сооружений.

По горящей поверхности товароматериальных ценностей, розливам ЛВЖ/ГЖ работают также автономные модули/стационарные системы порошкового подавления очагов пожаров, выбрасывающие порошок общего или специального назначения в зону горения по площади.

Локально-объемное тушение

Это более избирательные по сравнению с объемными системами АУПТ установки тушения пожаров, работающие, как правило, только по небольшому пространству вокруг защищаемого пожароопасного технологического оборудования. В этом качестве возможно использование следующих видов установок пожаротушения:

  • Пенных с генерацией огнетушащей смеси высокой и средней кратности.
  • Модульных установок газового пожаротушения.
  • Автономных порошковых установок.
  • Систем пожаротушения тонкораспыленной водой.

Последний способ довольно нов, но успешно используется, в т.ч. потому, что он наиболее безопасен для людей, находящихся в помещениях, оборудованных системами АУПТ; а его применение наносит минимальный ущерб отделке помещений, обстановке, имуществу.

Локально-поверхностное тушение

К ним относятся все водяные системы АУПТ, выдающие обычными/специальными дренчерными, спринклерными оросителями как мелкораспыленную, так и тонкораспыленную воду с добавками/без добавок; установки пенного пожаротушения, формирующие насадками пену низкой/средней кратности; порошковые установки с ОТВ общего/специального назначения.

Локально-поверхностный способ пожаротушения, заключающийся в направлении огнетушащего агента непосредственно в зону горения, в результате чего быстро сбивается пламя; немедленно прекращается доступ О2 к поверхностному горящему слою твердых, жидких материалов; резко снижается температура, следовательно, полностью прекращается процесс горения; ничем не отличается от поверхностного способа ликвидации огня, лишь только ограничен возможностями используемого оборудования нескольких видов/типов АУПТ, площадью надежно защищаемой поверхности.

В целом локальные способы автоматического пожаротушения как по объему, так и по площадям используют в тех случаях, когда защита всего помещения с помощью АУПТ технически невозможна, затруднена или связана с излишними затратами, что подтверждено расчетами технико-экономического обоснования. Тогда локально-поверхностные/объемные установки, надежно защищающие от возможного пожара только отдельные производственные участки, агрегаты, станки, конвейеры, тракты подачи сырья, топлива или другое технологическое оборудование, эффективны как с инженерной, так и с экономической точек зрения.

Источник

Методика проведения пожарно-тактических расчетов

Методика и формулы расчета сил и средств для тушения пожара

Расчеты сил и средств выполняют в следующих случаях:

  • при определении требуемого количества сил и средств на тушение пожара;
  • при оперативно-тактическом изучении объекта;
  • при разработке планов тушения пожаров;
  • при подготовке пожарно-тактических учений и занятий;
  • при проведении экспериментальных работ по определению эффектив­ности средств тушения;
  • в процессе исследования пожара для оценки действий РТП и подразделений.

Расчет сил и средств для тушения пожаров твердых горючих веществ и материалов водой (распространяющийся пожар)

Исходные данные для расчета сил и средств:

    • характеристика объекта (геометрические размеры, характер пожарной нагрузки и ее размещение на объекте, размещение водоисточников относительно объекта);
    • время с момента возникновения пожара до сообщения о нем (зависит от наличия на объекте вида средств охраны, средств связи и сигнализации, правильности действий лиц, обнаруживших пожар и т.д.);
    • линейная скорость распространения пожара Vл;
    • силы и средства, предусмотренные расписанием выездов и время их сосредоточения;
    • интенсивность подачи огнетушащих средств Iтр.

1) Определение времени развития пожара на различные моменты времени.

Выделяются следующие стадии развития пожара:

  • 1, 2 стадии свободного развития пожара, причем на 1 стадии (t до 10 мин) линейная скорость распространения принимается равной 50% ее максимального значения (табличного), характерного для данной категории объектов, а с момента времени более 10 мин она принимается равной максимальному значению;
  • 3 стадияхарактеризуется началом введения первых стволов на туше­ние пожара, в результате чего линейная скорость распространения пожара уменьшается, поэтому в промежутке времени с момента введения первых стволов до момента ограничения распространения пожара (момент локали­зации), ее значение принимается равным 0,5Vл. В момент выполнения условий локализации Vл= 0.
  • 4 стадия – ликвидация пожара.

tсв = tобн + tсооб + tсб + tсл + tбр (мин.), где

  • tсв – время свободного развития пожара на момент прибытия подразделения;
  • tобн время развития пожара с момента его возникновения до момента его обнаружения (2 мин. – при наличии АПС или АУПТ, 2-5 мин. – при наличии круглосуточного дежурства, 5 мин. – во всех остальных случаях);
  • tсооб – время сообщения о пожаре в пожарную охрану (1 мин. – если телефон находится в помещении дежурного, 2 мин. – если телефон в другом помещении);
  • tсб= 1 мин. – время сбора личного состава по тревоге;
  • tсл – время следования пожарного подразделения (2 мин. на 1 км пути);
  • tбр – время боевого развертывания (3 мин. при подаче 1-го ствола, 5 мин. в остальных случаях).

2) Определение расстояния R, пройденного фронтом горения, за время t.

  • где k= 1 – при круговой форме развития пожара (рис. 2),
  • k= 0,5– при полукруговой форме развития пожара (рис. 4),
  • k= 0,25 – при угловой форме развития пожара (рис. 3).

б) Площадь пожара при прямоугольной форме развития пожара.

  • где n – количество направлений развития пожара,
  • b – ширина помещения.
Читайте также:  Выберите удобный для вас способ связи с нами

в) Площадь пожара при комбинированной форме развития пожара (рис 7)

Комбинированная форма пожара

4) Определение площади тушения пожара.

Площадь тушения Sт – это часть площади пожара, на которую осуществляется эффективное воздействие огнетушащими веществами.

Для практических расчетов используется параметр, называемый глубиной тушения hт, который равен для ручных стволов hт = 5 м, для лафетных hт = 10 м.

Тушение пожара производят, вводя стволы либо со всех сторон пожара – по периметру пожара (Рис. 8), либо на одном или нескольких направлениях, как правило, по фронту пожара (Рис. 9).

В некоторых случаях пожарные подразделения не могут подать огнетушащее средство одновременно на всю площадь пожара, например, при недостатке сил и средств, тогда тушение осуществляется по фронту распространяющегося пожара. При этом пожар локализуется на решающем направлении, а затем осуществляется процесс его тушения на других направлениях.

Тушение пожара по периметру и фронту

а) Площадь тушения пожара по периметру при круговой форме развития пожара.

  • где r=Rhт ,
  • hт – глубина тушения стволов (для ручных стволов – 5м, для лафетных – 10 м).

б) Площадь тушения пожара по периметру при прямоугольной форме развития пожара.

где а и b – соответственно длина и ширина фронта пожара.

где b и n – соответственно ширина помещения и количество направлений подачи стволов.

5) Определение требуемого расхода воды на тушение пожара.

Интенсивность подачи огнетушащих веществ Iтр – это количество огнетушащего вещества, подаваемое за единицу времени на единицу расчетного параметра.

Различают следующие виды интенсивности:

Линейная – когда в качестве расчетного принят линейный параметр: например, фронт или периметр. Единицы измерения – л/с∙м. Линейная интенсивность используется, например, при определении количества стволов на охлаждение горящих и соседних с горящим резервуаров с нефтепродуктами.

Поверхностная – когда в качестве расчетного параметра принята площадь тушения пожара. Единицы измерения – л/с∙м 2 . Поверхностная интенсивность используется в практике пожаротушения наиболее часто, так как для тушения пожаров в большинстве случаев используется вода, которая тушит пожар по поверхности горящих материалов.

Объемная – когда в качестве расчетного параметра принят объем тушения. Единицы измерения – л/с∙м 3 . Объемная интенсивность используется, преимущественно, при объемном тушении пожаров, например, инертными газами.

Требуемая Iтр – количество огнетушащего вещества, которое необходимо подавать за единицу времени на единицу расчетного параметра тушения. Определяется требуемая интенсивность на основе расчетов, экспериментов, статистических данных по результатам тушения реальных пожаров и т.д.

Фактическая Iф – количество огнетушащего вещества, которое фактически подано за единицу времени на единицу расчетного параметра тушения.

6) Определение требуемого количества стволов на тушение.

Рп – часть периметра, на тушение которого вводятся стволы

Рст = qст / Iтр hт – часть периметра пожара, которая тушится одним стволом. Р = 2·p ·L (длина окружности), Р = 2·а + 2·b (прямоугольник)

Стволы на тушение в складах со стеллажным хранением

  • где n – количество направлений развития пожара (ввода стволов),
  • m – количество проходов между горящими стеллажами,
  • A – количество проходов между горящим и соседним негорящим стеллажами.

7) Определение требуемого количества отделений для подачи стволов на тушение.

где nст отд – количество стволов, которое может подать одно отделение.

8) Определение требуемого расхода воды на защиту конструкций.

  • где Sз – защищаемая площадь (перекрытия, покрытия, стены, перегородки, оборудование и т.п.),
  • Iзтр= (0,3-0,5)·Iтр – интенсивность подачи воды на защиту.

9) Водоотдача кольцевой водопроводной сети рассчитывается по формуле:

Q к сети = ((D/25) x Vв ) 2 [л/с], (40) где,

  • D – диаметр водопроводной сети, [мм];
  • 25 – переводное число из миллиметров в дюймы;
  • Vв – скорость движения воды в водопроводе, которая равна:
  • – при напоре водопроводной сети Hв =1,5 [м/с];
  • – при напоре водопроводной сети H>30 м вод.ст. –Vв =2 [м/с].

Водоотдача тупиковой водопроводной сети рассчитывается по формуле:

Q т сети = 0,5 x Q к сети , [л/с].

10) Определение требуемого количества стволов на защиту конструкций.

Также количество стволов часто определяется без аналитического расчета из тактических соображений, исходя из мест размещения стволов и количества защищаемых объектов, например, на каждую ферму по одному лафетному стволу, в каждое смежное помещение по стволу РС-50.

11) Определение требуемого количества отделений для подачи стволов на защиту конструкций.

12) Определение требуемого количества отделений для выполнения других работ (эвакуация людей, мат. ценностей, вскрытия и разборки конструкций).

13) Определение общего требуемого количества отделений.

На основании полученного результата РТП делает вывод о достаточности привлеченных к тушению пожара сил и средств. Если сил и средств недостаточно, то РТП делает новый расчет на момент прибытия последнего подразделения по следующему повышенному номеру (рангу) пожара.

14) Сравнение фактического расхода воды Qф на тушение, защиту и водоотдачи сети Qвод противопожарного водоснабжения

15) Определение количества АЦ, устанавливаемых на водоисточники для подачи расчетного расхода воды.

На водоисточники устанавливают не всю технику, которая прибывает на пожар, а такое количество, которое обеспечило бы подачу расчетного расхода, т.е.

NАЦ = Qтр / 0,8 Qн ,

где Qн – подача насоса, л/с

Такой оптимальный расход проверяют по принятым схемам боевого развертывания, с учетом длинны рукавных линий и расчетного количества стволов. В любом из указанных случаев, если позволяют условия (в частности, насосно-рукавная система), боевые расчеты прибывающих подразделений должны использоваться для работы от уже установленных на водоисточники автомобилей.

Это не только обеспечит использование техники на полную мощность, но и ускорит введение сил и средств на тушение пожара.

В зависимости от обстановки на пожаре требуемый расход огнетушащего вещества определяют на всю площадь пожара или на площадь тушения пожара. На основании полученного результата РТП может сделать вывод о достаточности привлеченных к тушению пожара сил и средств.

Расчет сил и средств для тушения пожаров воздушно-механической пеной на площади

(не распространяющиеся пожары или условно приводящиеся к ним)

Исходные данные для расчета сил и средств:

  • площадь пожара;
  • интенсивность подачи раствора пенообразователя;
  • интенсивность подачи воды на охлаждение;
  • расчетное время тушения.

При пожарах в резервуарных парках за расчетный параметр принимают площадь зеркала жидкости резервуара или наибольшую возможную площадь разлива ЛВЖ при пожарах на самолетах.

На первом этапе боевых действий производят охлаждение горящих и соседних резервуаров.

1) Требуемое количество стволов на охлаждение горящего резервуара.

N зг ств = Q зг тр / qств = n π Dгор I зг тр / qств, но не менее 3 х стволов,

I зг тр = 0,8 л/см – требуемая интенсивность для охлаждения горящего резервуара,

I зг тр = 1,2 л/см – требуемая интенсивность для охлаждения горящего резервуара при пожаре в обваловании,

Охлаждение резервуаров Wрез ≥ 5000 м 3 и более целесообразно осуществлять лафетными стволами.

2) Требуемое количество стволов на охлаждение соседнего не горящего резервуара.

N зс ств = Q зс тр / qств = n 0,5 π Dсос I зс тр / qств, но не менее 2 х стволов,

I зс тр = 0,3 л/см – требуемая интенсивность для охлаждения соседнего не горящего резервуара,

n – количество горящих или соседних резервуаров соответственно,

Dгор, Dсос – диаметр горящего или соседнего резервуара соответственно (м),

qств – производительность одного пожарного ствола (л/с),

Q зг тр, Q зс тр – требуемый расход воды на охлаждение (л/с).

3) Требуемое количество ГПС Nгпс на тушение горящего резервуара.

Nгпс = Sп I р-ор тр / q р-ор гпс (шт.),

Sп – площадь пожара (м 2 ),

I р-ор тр – требуемая интенсивность подачи раствора пенообразователя на тушение (л/с∙м 2 ). При tвсп ≤ 28 о C I р-ор тр = 0,08 л/с∙м 2 , при tвсп > 28 о C I р-ор тр = 0,05 л/с∙м 2 (см. приложение № 9)

q р-ор гпс производительность ГПС по раствору пенообразователя (л/с).

4) Требуемое количество пенообразователя Wпо на тушение резервуара.

Wпо = Nгпс q по гпс ∙ 60 ∙ τр ∙ Кз (л),

τр = 15 минут – расчетное время тушения при подаче ВМП сверху,

τр = 10 минут – расчетное время тушения при подаче ВМП под слой горючего,

Кз = 3 – коэффициент запаса (на три пенные атаки),

q по гпс – производительность ГПС по пенообразователю (л/с).

5) Требуемое количество воды Wв т на тушение резервуара.

Wв т = Nгпс q в гпс ∙ 60 ∙ τр ∙ Кз (л),

q в гпс – производительность ГПС по воде (л/с).

6) Требуемое количество воды Wв з на охлаждение резервуаров.

Wв з = N з ств qств τр ∙ 3600 (л),

N з ств – общее количество стволов на охлаждение резервуаров,

qств – производительность одного пожарного ствола (л/с),

τр = 6 часов – расчетное время охлаждения наземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93),

τр = 3 часа – расчетное время охлаждения подземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93).

7) Общее требуемое количество воды на охлаждение и тушение резервуаров.

Wв общ = Wв т + Wв з (л)

8) Ориентировочное время наступления возможного выброса Т нефтепродуктов из горящего резервуара.

T= (H h) / (W+ u + V) (ч), где

H – начальная высота слоя горючей жидкости в резервуаре, м;

h – высота слоя донной (подтоварной) воды, м;

W – линейная скорость прогрева горючей жидкости, м/ч (табличное значение);

u – линейная скорость выгорания горючей жидкости, м/ч (табличное значение);

V – линейная скорость понижения уровня вследствие откачки, м/ч (если откачка не производится, то V= 0).

Тушение пожаров в помещениях воздушно-механической пеной по объему

При пожарах в помещениях иногда прибегают к тушению пожара объемным способом, т.е. заполняют весь объем воздушно-механической пеной средней кратности (трюмы кораблей, кабельные тоннели, подвальные помещения и т.д.).

При подаче ВМП в объем помещения должно быть не менее двух проемов. Через один проем подают ВМП, а через другой происходит вытеснение дыма и избыточного давления воздуха, что способствует лучшему продвижению ВМП в помещении.

1) Определение требуемого количества ГПС для объемного тушения.

Nгпс = Wпом ·Кр / qгпс tн , где

Wпом – объем помещения (м 3 );

Кр = 3 – коэффициент, учитывающий разрушение и потерю пены;

qгпс – расход пены из ГПС (м 3 /мин.);

tн = 10 мин – нормативное время тушения пожара.

2) Определение требуемого количества пенообразователя Wпо для объемного тушения.

Wпо = Nгпс q по гпс ∙ 60 ∙ τр ∙ Кз (л),

Пропускная способность рукавов

Приложение № 1

Пропускная способность одного прорезиненного рукава длиной 20 метров в зависимости от диаметра

Пропускная способность, л/с

Диаметр рукавов, мм

51 66 77 89 110 150 10,2 17,1 23,3 40,0

Приложение 2

Величины сопротивления одного напорного рукава длиной 20 м

Тип рукавов Диаметр рукавов, мм
51 66 77 89 110 150
Прорезиненные 0,15 0,035 0,015 0,004 0,002 0,00046
Непрорезиненные 0,3 0,077 0,03

Приложение 3

Объем одного рукава длиной 20 м

Диаметр рукава, мм 51 66 77 89 110 150
Объем рукава, л 40 70 90 120 190 350

Приложение № 4

Геометрические характеристики основных типов стальных вертикальных резервуаров (РВС).

№ п/п Тип резервуара Высота резервуара, м Диаметр резервуара, м Площадь зеркала горючего, м 2 Периметр резервуара, м
1 РВС-1000 9 12 120 39
2 РВС-2000 12 15 181 48
3 РВС-3000 12 19 283 60
4 РВС-5000 12 23 408 72
5 РВС-5000 15 21 344 65
6 РВС-10000 12 34 918 107
7 РВС-10000 18 29 637 89
8 РВС-15000 12 40 1250 126
9 РВС-15000 18 34 918 107
10 РВС-20000 12 46 1632 143
11 РВС-20000 18 40 1250 125
12 РВС-30000 18 46 1632 143
13 РВС-50000 18 61 2892 190
14 РВС-100000 18 85,3 5715 268
15 РВС-120000 18 92,3 6691 290
Читайте также:  Развитие исторического процесса обусловлено способом производства материальных благ

Приложение № 5

Линейные скорости распространения горения при пожарах на объектах.

Наименование объекта Линейная скорость распространения горения, м/мин
Административные здания 1,0…1,5
Библиотеки, архивы, книгохранилища 0,5…1,0
Жилые дома 0,5…0,8
Коридоры и галереи 4,0…5,0
Кабельные сооружения (горение кабелей) 0,8…1,1
Музеи и выставки 1,0…1,5
Типографии 0,5…0,8
Театры и Дворцы культуры (сцены) 1,0…3,0
Сгораемые покрытия цехов большой площади 1,7…3,2
Сгораемые конструкции крыш и чердаков 1,5…2,0
Холодильники 0,5…0,7
Деревообрабатывающие предприятия:
Лесопильные цехи (здания I, II, III СО) 1,0…3,0
То же, здания IV и V степеней огнестойкости 2,0…5,0
Сушилки 2,0…2,5
Заготовительные цеха 1,0…1,5
Производства фанеры 0,8…1,5
Помещения других цехов 0,8…1,0
Лесные массивы (скорость ветра 7…10 м/с, влажность 40 %)
Сосняк до 1,4
Ельник до 4,2
Школы, лечебные учреждения:
Здания I и II степеней огнестойкости 0,6…1,0
Здания III и IV степеней огнестойкости 2,0…3,0
Объекты транспорта:
Гаражи, трамвайные и троллейбусные депо 0,5…1,0
Ремонтные залы ангаров 1,0…1,5
Склады:
Текстильных изделий 0,3…0,4
Бумаги в рулонах 0,2…0,3
Резинотехнических изделий в зданиях 0,4…1,0
То же в штабелях на открытой площадке 1,0…1,2
Каучука 0,6…1,0
Товарно-материальных ценностей 0,5…1,2
Круглого леса в штабелях 0,4…1,0
Пиломатериалов (досок) в штабеля при влажности 16…18 % 2,3
Торфа в штабелях 0,8…1,0
Льноволокна 3,0…5,6
Сельские населенные пункты:
Жилая зона при плотной застройке зданиями V степени огнестойкости, сухой погоде 2,0…2,5
Соломенные крыши зданий 2,0…4,0
Подстилка в животноводческих помещениях 1,5…4,0

Приложение № 6

Интенсивность подачи воды при тушении пожаров, л/(м 2 .с)

1. Здания и сооружения
Административные здания:
I-III степени огнестойкости 0.06
IV степени огнестойкости 0.10
V степени огнестойкости 0.15
подвальные помещения 0.10
чердачные помещения 0.10
Больницы 0.10
2. Жилые дома и подсобные постройки:
I-III степени огнестойкости 0.06
IV степени огнестойкости 0.10
V степени огнестойкости 0.15
подвальные помещения 0.15
чердачные помещения 0.15
3.Животноводческие здания:
I-III степени огнестойкости 0.15
IV степени огнестойкости 0.15
V степени огнестойкости 0.20
4.Культурно-зрелищные учреждения (театры, кинотеатры, клубы, дворцы культуры):
сцена 0.20
зрительный зал 0.15
подсобные помещения 0.15
Мельницы и элеваторы 0.14
Ангары, гаражи, мастерские 0.20
локомотивные, вагонные, трамвайные и троллейбусные депо 0.20
5.Производственные здания участки и цехи:
I-II степени огнестойкости 0.15
III-IV степени огнестойкости 0.20
V степени огнестойкости 0.25
окрасочные цехи 0.20
подвальные помещения 0.30
чердачные помещения 0.15
6. Сгораемые покрытия больших площадей
при тушении снизу внутри здания 0.15
при тушении снаружи со стороны покрытия 0.08
при тушении снаружи при развившемся пожаре 0.15
Строящиеся здания 0.10
Торговые предприятия и склады 0.20
Холодильники 0.10
7. Электростанции и подстанции:
кабельные тоннели и полуэтажи 0.20
машинные залы и котельные помещения 0.20
галереи топливоподачи 0.10
трансформаторы, реакторы, масляные выключатели* 0.10
8. Твердые материалы
Бумага разрыхленная 0.30
Древесина:
балансовая при влажности, %:
40-50 0.20
менее 40 0.50
пиломатериалы в штабелях в пределах одной группы при влажности, %:
8-14 0.45
20-30 0.30
свыше 30 0.20
круглый лес в штабелях в пределах одной группы 0.35
щепа в кучах с влажностью 30-50 % 0.10
Каучук, резина и резинотехнические изделия 0.30
Пластмассы:
термопласты 0.14
реактопласты 0.10
полимерные материалы 0.20
текстолит, карболит, отходы пластмасс, триацетатная пленка 0.30
Хлопок и другие волокнистые материалы:
открытые склады 0.20
закрытые склады 0.30
Целлулоид и изделия из него 0.40
Ядохимикаты и удобрения 0.20

* Подача тонкораспыленной воды.

Тактико-технические показатели приборов подачи пены

Прибор подачи пены Напор у прибора, м Концция р-ра, % Расход, л/с Кратность пены Производ-сть по пене, м куб./мин(л/с) Дальность подачи пены, м
воды ПО р-ра ПО
ПЛСК-20 П 40-60 6 18,8 1,2 20 10 12 50
ПЛСК-20 С 40-60 6 21,62 1,38 23 10 14 50
ПЛСК-60 С 40-60 6 47,0 3,0 50 10 30 50
СВП 40-60 6 5,64 0,36 6 8 3 28
СВП(Э)-2 40-60 6 3,76 0,24 4 8 2 15
СВП(Э)-4 40-60 6 7,52 0,48 8 8 4 18
СВП-8(Э) 40-60 6 15,04 0,96 16 8 8 20
ГПС-200 40-60 6 1,88 0,12 2 80-100 12 (200) 6-8
ГПС-600 40-60 6 5,64 0,36 6 80-100 36 (600) 10
ГПС-2000 40-60 6 18,8 1,2 20 80-100 120 (2000) 12

Линейная скорость выгорания и прогрева углеводородных жидкостей

Наименование горючей жидкости Линейная скорость выгорания, м/ч Линейная скорость прогрева горючего, м/ч
Бензин До 0,30 До 0,10
Керосин До 0,25 До 0,10
Газовый конденсат До 0,30 До 0,30
Дизельное топливо из газового конденсата До 0,25 До 0,15
Смесь нефти и газового конденсата До 0,20 До 0,40
Дизельное топливо До 0,20 До 0,08
Нефть До 0,15 До 0,40
Мазут До 0,10 До 0,30

Примечание: с увеличением скорости ветра до 8-10 м/с скорость выгорания горючей жидкости возрастает на 30-50 %. Сырая нефть и мазут, содержащие эмульсионную воду, могут выгорать с большей скоростью, чем указано в таблице.

Изменения и дополнения в Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках

(информационное письмо ГУГПС от 19.05.00 № 20/2.3/1863)

Таблица 2.1. Нормативные интенсивности подачи пены средней кратности для тушения пожаров нефти и нефтепродуктов в резервуарах

№ п/п Вид нефтепродукта Нормативная интенсивность подачи раствора пенообразователя, л м 2 с’
Пенообразователи общего назначения Пенообразователи целевого назначения
Углеводородные Фторсодержащие
не пленкообразующие пленкообразующие
1 Нефть и нефтепродукты с Твсп 28° С и ниже и ГЖ, нагретыe выше Твсп 0,08 0,06 0,05
2 Нефть и нефтепродукты с Твсп более 28 °С 0,05 0,05 0,04
3 Стабильный газовый конденсат 0,12 0,1

Примечание: Для нефти с примесями газового конденсата, а также для нефтепродуктов, полученных из газового конденсата, необходимо определение нормативной интенсивности в соответствии с действующими методиками.

Таблица 2.2. Нормативная интенсивность подачи пены низкой кратности для тушения нефти и нефтепродуктов в резервуарах*

№ п/п Вид нефтепродукта Нормативная интенсивность подачи раствора пенообразователя, л м 2 с’
Фторсодержащие пенообразователи “не пленкообразующие” Фторсинтетические “пленкообразующие” пенообразователи Фторпротеиновые “пленкообразующие” пенообразователи
на поверхность в слой на поверхность в слой на поверхность в слой
1 Нефть и нефтепродукты с Твсп 28° С и ниже 0,08 0,07 0,10 0,07 0,10
2 Нефть и нефтепродукты с Твсп более 28 °С 0,06 0,05 0,08 0,05 0,08
3 Стабильный газовый конденсат 0,12 0,10 0,14 0,10 0,14

Основные показатели, характеризующих тактические возможности пожарных подразделений

Руководитель тушения пожара должен не только знать возможности подразделений, но и уметь определять основные тактические показатели:

  • время работы стволов и приборов подачи пены;
  • возможную площадь тушения воздушно-механической пеной;
  • возможный объем тушения пеной средней кратности с учетом имеющегося на автомобиле запаса пенообразователя;
  • предельное расстояние по подаче огнетушащих средств.

Расчеты приведены согласно Справочник руководителя тушения пожара (РТП). Иванников В.П., Клюс П.П., 1987

Определение тактических возможностей подразделения без установки пожарного автомобиля на водоисточник

1) Определение формула времени работы водяных стволов от автоцистерны:

  • где: tраб – время работы стволов, мин.;
  • Vц – объем воды в цистерне пожарного автомобиля, л;
  • Nр – число рукавов в магистральной и рабочих линиях, шт.;
  • Vр – объем воды в одном рукаве, л (см. прилож.);
  • Nст – число водяных стволов, шт.;
  • Qст – расход воды из стволов, л/с (см. прилож.);
  • k – коэффициент, учитывающий неровности местности (k = 1,2 – стандартное значение),
  • L – расстояние от места пожара до пожарного автомобиля (м).

Дополнительно обращаем Ваше внимание, что в справочнике РТП Тактические возможности пожарных подразделений. Теребнев В.В., 2004 в разделе 17.1 приводится, точно такая же формула но с коэффициентом 0,9: Tраб = ( 0,9Vц – Np ·Vp) / Nст ·Qст ·60 (мин.)

2) Определение формула возможной площади тушения водой S Т от автоцистерны:

  • где: Jтр– требуемая интенсивность подачи воды на тушение, л/с·м 2 (см. прилож.);
  • tрасч= 10 мин. – расчетное время тушения.

3) Определение формула времени работы приборов подачи пены от автоцистерны:

  • где: Vр-ра – объем водного раствора пенообразователя, полученный от заправочных емкостей пожарной машины, л;
  • Nгпс – число ГПС (СВП), шт;
  • Qгпс – расход раствора пенообразователя из ГПС (СВП), л/с (см. прилож.).

Чтобы определить объем водного раствора пенообразователя, надо знать, насколько будут израсходованы вода и пенообразователь.

КВ = 100–С / С = 100–6 / 6 = 94 / 6 = 15,7 – количество воды (л), приходящееся на 1 литр пенообразователя для приготовления 6-ти % раствора (для получения 100 литров 6-ти % раствора необходимо 6 литров пенообразователя и 94 литра воды).

Тогда фактическое количество воды, приходящееся на 1 литр пенообразователя, составляет:

  • где Vц – объем воды в цистерне пожарной машины, л;
  • Vпо – объем пенообразоователя в баке, л.

если Кф Кв , то Vр-ра = Vпо ·Кв + Vпо (л) – пенообразователь расходуется полностью, а часть воды остается.

4) Определение возможной формула площади тушения ЛВЖ и ГЖ воздушно-механической пеной:

  • где: Sт – площадь тушения, м 2 ;
  • Jтр – требуемая интенсивность подачи раствора ПО на тушение, л/с·м 2 ;

При tвсп ≤ 28 о C Jтр = 0,08 л/с∙м 2 , при tвсп > 28 о C Jтр = 0,05 л/с∙м 2 .

5) Определение формула объема воздушно-механической пены, получаемого от АЦ:

6) Определение возможного объема тушения воздушно-механической пеной:

  • где: Vт – объем тушения пожара;
  • Кз= 2,5–3,5 – коэффициент запаса пены, учитывающий разрушение ВМП вследствие воздействия высокой температуры и других факторов.

Примеры решения задач

Пример № 1. Определить время работы двух стволов Б с диаметром насадка 13 мм при напоре 40 метров, если до разветвления проложен один рукав d 77 мм, а рабочие линии состоят из двух рукавов d 51 мм от АЦ-40(131)137А.

Пример № 2. Определить время работы ГПС-600, если напор у ГПС-600 60 м, а рабочая линия состоит из двух рукавов диаметром 77 мм от АЦ-40 (130) 63Б.

1) Определяем объем водного раствора пенообразователя:

Пример № 3. Определить возможную площадь тушения бензина ВМП средней кратности от АЦ-4-40 (Урал-23202).

1) Определяем объем водного раствора пенообразователя:

2) Определяем возможную площадь тушения:

Пример № 4. Определить возможный объем тушения (локализации) пожара пеной средней кратности (К=100) от АЦ-40(130)63б (см. пример № 2).

Тогда объем тушения (локализации):

Определение тактических возможностей подразделения с установкой пожарного автомобиля на водоисточник

1) Определение предельного расстояния по подаче огнетушащих средств:

Формула предельное расстояние подачи огнетушащих веществ

  • Lпр – предельное расстояние (м),
  • Hн= 90÷100 м – напор на насосе АЦ,
  • Hразв= 10 м – потери напора в разветвлении и рабочих рукавных линиях,
  • Hст= 35÷40 м – напор перед стволом,
  • Zм – наибольшая высота подъема (+) или спуска (–) местности (м),
  • Zст – наибольшая высота подъема (+) или спуска (–) стволов (м),
  • S – сопротивление одного пожарного рукава,
  • Q – суммарный расход воды в одной из двух наиболее загруженной магистральной рукавной линии (л/с),

2) Определение необходимого напора на пожарном насосе Hн:

3) Определение продолжительности работы водяных стволов от водоемов с ограниченным запасом воды:

Формула время работы пожарных стволов

  • VПВ – запас воды в пожарном водоеме (л);
  • VЦ – запас воды в цистерне пожарного автомобиля (л);
  • Nрук – количество рукавов в магистральных и рабочих линиях (шт.);
  • Vрук – объем одного рукава (л);
  • NСТ – количество подаваемых стволов от пожарного автомобиля (шт.);
  • qСТ – расход воды из ствола (л/с);

Коэффициент 0,9 говорит нам о том, что всю воду из водоема мы забрать не сможем.

4) Определение продолжительности работы приборов подачи пены:

Продолжительность работы приборов подачи пены зависит от запаса пенообразователя в заправочной емкости пожарного автомобиля или доставленного на место пожара.

Читайте также:  Способы обхода аккаунта google frp после сброса huawei

Способ № 1 (по расходу водного раствора пенообразователя):

Np ·Vp = 0, т.к. весь водный раствор пенообразователя будет вытеснен из рукавов и примет участие в формировании ВМП (пенообразователь расходуется полностью, а вода остается), поэтому формула имеет окончательный вид:

Способ № 2 (по расходу запаса пенообразователя):

5) Определение возможного объема тушения (локализации) пожара:

Для ускоренного вычисления объема воздушно-механической пены средней кратности (К = 100, 4- и 6 % -ный водный раствор пенообразователя), получаемой от пожарных автомобилей с установкой их на водоисточник при расходе всего запаса пенообразователя, используют следующие формулы:

  • где Vп – объем пены, м 3 ;
  • Vпо – количество пенообразователя (л);
  • 4 и 6 – количество пенообразователя (л), расходуемого для получения 1 м 3 пены соответственно при 4- и 6 % -ном растворе.

КВ = 100–С / С = 100–6 / 6 = 94 / 6

Кп – количество пены, получаемой из 1 литра пенообразователя (для 6% раствора).

Примеры решения задач

Пример № 1. Определить предельное расстояние по подаче ствола А с d насадка 19 мм и 2-х стволов Б с диаметром насадка 13 мм, если напор у стволов 40 м, напор на насосе 100 м, высота подъема местности 8 м, высота подъема стволов 12 м. Рукава магистральной линии d 77 мм.

Пример № 2. Определить время работы двух стволов А с d насадка 19 мм и 2-х стволов Б с диаметром насадка 13 мм от автонасоса, установленного на пожарный водоем вместимостью 50 м 3 . Расстояние от места установки разветвления до водоема 100 метров.

Пример № 3. Определить время работы двух ГПС-600 от АЦ-5.0-40 (КАМАЗ – 4310), установленной на пожарный гидрант.

Пример № 4. Определить возможный объем тушения (локализации) воздушно-механической пеной средней кратности, если использовался 6 %-ный раствор пенообразователя от АЦ-4-40 (ЗиЛ-433104).

Расчет основных показателей тактических возможностей подразделений позволяет заблаговременно определить возможный объем боевых действий на пожаре и их реальное выполнение.

Организация бесперебойной подачи воды

Методика расчета потребного количества пожарных автомобилей для перекачки воды к месту тушения пожара

Перекачку воды насосами пожарных машин применяют, если рас­стояние от водоисточника до места пожара велико (до 2 км), напор, развиваемый одним насосом, недостаточен для преодоления потерь напора в рукавных линиях и для создания рабочих пожарных струй.

Перекачка применяется также, если невозможен подъезд к водоисточнику для пожарных автомобилей (при крутых или обрывистых берегах, в заболоченных местах, при вымерзании пруда или реки у берегов и т.д.). Для этого способа перекачки применяют переносные технические устройства с уста­новленными на них насосами (переносные пожарные мотопомпы).

Рис. 1. Схема подачи воды в перекачку

Расстояние в рукавах (штуках) Расстояние в метрах
1) Определение предельного расстояния от места пожара до головного пожарного автомобиля Nгол (Lгол).
2) Определение расстояния между пожарными машинами Nмм (Lмм), работающими в перекачку (длины ступени перекачки).
3) Определение количества ступеней перекачки Nст
4) Определение общего количества пожарных машин для перекачки Nавт
5) Определение фактического расстояния от места пожара до головного пожарного автомобиля N ф гол (L ф гол).
  • Hн= 90÷100 м – напор на насосе АЦ,
  • Hразв= 10 м – потери напора в разветвлении и рабочих рукавных линиях,
  • Hст= 35÷40 м – напор перед стволом,
  • Hвх≥ 10 м – напор на входе в насос следующей ступени перекачки,
  • Zм – наибольшая высота подъема (+) или спуска (–) местности (м),
  • Zст – наибольшая высота подъема (+) или спуска (–) стволов (м),
  • S – сопротивление одного пожарного рукава,
  • Q – суммарный расход воды в одной из двух наиболее загруженной магистральной рукавной линии (л/с),
  • L – расстояние от водоисточника до места пожара (м),
  • Nрук – расстояние от водоисточника до места пожара в рукавах (шт.).

Пример: Для тушения пожара необходимо подать три ствола Б с диаметром насадка 13 мм, максимальная высота подъема стволов 10 м. Ближайшим водоисточником является пруд, расположенный на расстоянии 1,5 км от места пожара, подъем местности равномерный и составляет 12 м. Определить количество автоцистерн АЦ−40(130) для перекачки воды на тушение пожара.

Решение:

1) Принимаем способ перекачки из насоса в насос по одной магистральной линии.

2) Определяем предельное расстояние от места пожара до головного пожарного автомобиля в рукавах.

NГОЛ = [HН − (НР ± ZМ ± ZСТ )] / SQ 2 = [90 − (45 + 0 + 10)] / 0,015 · 10,5 2 = 21,1 = 21.

3) Определяем предельное расстояние между пожарными автомобилями, работающими в перекачку, в рукавах.

NМР = [HН − (HВХ ± ZМ )] / SQ 2 = [90 − (10 + 12)] / 0,015 · 10,5 2 = 41,1 = 41.

4) Определяем расстояние от водоисточника до места пожара с учетом рельефа местности.

NР = 1,2 · L/20 = 1,2 · 1500 / 20 = 90 рукавов.

5) Определяем число ступеней перекачки

6) Определяем количество пожарных автомобилей для перекачки.

NАЦ = NСТУП + 1 = 2 + 1 = 3 автоцистерны

7) Определяем фактическое расстояние до головного пожарного автомобиля с учетом установки его ближе к месту пожара.

NГОЛ ф = NР − NСТУП · NМР = 90 − 2 · 41 = 8 рукавов.

Следовательно, головной автомобиль можно приблизить к месту пожара.

Методика расчета потребного количества пожарных автомобилей для подвоза воды к месту тушения пожара

Если застройка сгораемая, а водоисточники находятся на очень боль­шом расстоянии, то время, затраченное на прокладку рукавных линий, будет слишком большим, а пожар скоротечным. В таком случае лучше подвозить воду автоцистернами с параллельной организацией перекачки. В каждом конкретном случае необходимо решать тактическую задачу, при­нимая во внимание возможные масштабы и длительность пожара, рас­стояние до водоисточников, скорость сосредоточения пожарных автомо­билей, рукавных автомобилей и другие особенности гарнизона.

Подвоз воды осуществляется при удалении водоисточника на расстоянии более 2 км или, если имеются сложности в заборе воды и отсутствии технических средств, позволяющих забрать воду в неблаго­приятных условиях.

Формула количество АЦ на подвоз воды

Формула время следование к водоисточнику

(мин.) – время следования АЦ к водоисточнику или обратно;

Формула время заправки АЦ

(мин.) – время заправки АЦ;

Формула расхода воды АЦ

(мин.) – время расхода воды АЦ на месте тушения пожара;

  • L – расстояние от места пожара до водоисточника (км);
  • 1 – минимальное количество АЦ в резерве (может быть увеличено);
  • Vдвиж – средняя скорость движения АЦ (км/ч);
  • Wцис – объем воды в АЦ (л);
  • Qп – средняя подача воды насосом, заправляющим АЦ, или расход воды из пожарной колонки, установленной на пожарный гидрант (л/с);
  • Nпр – число приборов подачи воды к месту тушения пожара (шт.);
  • Qпр – общий расход воды из приборов подачи воды от АЦ (л/с).

Рис. 2. Схема подачи воды способом подвоза пожарными автомобилями.

Подвоз воды должен быть бесперебойным. Следует иметь в виду, что у водоисточников необходимо (в обязательном порядке) создавать пункт заправки автоцистерн водой.

Пример. Определить количество автоцистерн АЦ−40(130)63б для подвоза воды из пруда, расположенного в 2 км от места пожара, если для тушения необходимо подать три ствола Б с диаметром насадка 13 мм. Заправку автоцистерн осуществляют АЦ−40(130)63б, средняя скорость движения автоцистерн 30 км/ч.

Решение:

1) Определяем время следования АЦ к месту пожара или обратно.

tСЛ = L · 60 / VДВИЖ = 2 · 60 / 30 = 4 мин.

2) Определяем время заправки автоцистерн.

tЗАП = VЦ /QН · 60 = 2350 / 40 · 60 = 1 мин.

3)Определяем время расхода воды на месте пожара.

t РАСХ = VЦ / NСТ · QСТ · 60 = 2350 / 3 · 3,5 · 60 = 4 мин.

4) Определяем количество автоцистерн для подвоза воды к месту пожара.

NАЦ = [(2tСЛ + tЗАП ) / tРАСХ ] + 1 = [(2 · 4 + 1) / 4] + 1 = 4 автоцистерны.

Методика расчета подачи воды к месту тушения пожара с помощью гидроэлеваторных систем

При наличии заболоченных или густо заросших берегов, а так же при значительном расстоянии до поверхности воды (более 6,5-7 метров), превышающем глубину всасывания пожарного насоса (высокий крутой берег, колодцы и т.п.) необходимо применять для забора воды гидроэлеватор Г-600 и его модификации.

1) Определим требуемое количество воды VСИСТ, необходимое для запуска гидроэлеваторной системы:

VСИСТ = NР ·VР ·K ,

NР = 1,2·(L + ZФ) / 20,

  • гдеNР− число рукавов в гидроэлеваторной системе (шт.);
  • VР− объем одного рукава длиной 20 м (л);
  • K − коэффициент, зависящий от количества гидроэлеваторов в системе, работающей от одной пожарной машины (К = 2 – 1 Г-600, K=1,5 – 2 Г-600);
  • L – расстояние от АЦ до водоисточника (м);
  • ZФ – фактическая высота подъема воды (м).

Определив требуемое количество воды для запуска гидроэлеваторной системы, сравнивают полученный результат с запасом воды, находящимся в пожарной автоцистерне, и выявляют возможность запуска данной системы в работу.

2) Определим возможность совместной работы насоса АЦ с гидроэлеваторной системой.

И = QСИСТ / QН ,

QСИСТ = NГ (Q1 + Q2),

  • гдеИ – коэффициент использования насоса;
  • QСИСТ− расход воды гидроэлеваторной системой (л/с);
  • QН − подача насоса пожарного автомобиля (л/с);
  • NГ− число гидроэлеваторов в системе (шт.);
  • Q1 = 9,1 л/с − рабочий расход воды одного гидроэлеватора;
  • Q2=10 л/с − подача одного гидроэлеватора.

При И 2 ) · 20 (м),

  • где HН напор на насосе пожарного автомобиля, м;
  • НР напор у разветвления (принимается равным: НСТ+10) , м;
  • ZМ высота подъема (+) или спуска (−) местности, м;
  • ZСТ − высота подъема (+) или спуска (−) стволов, м;
  • S − сопротивление одного рукава магистральной линии
  • Q − суммарный расход из стволов, подсоединенных к одной из двух наиболее нагруженной магистральной линии, л/с.

Таблица 1.

Определение напора на насосе при заборе воды гидроэлеватором Г−600 и работе стволов по соответствующим схемам подачи воды на тушение пожара.

Высота подъема воды, м Напор на насосе, м
Один ствол А или три ствола Б Два ствола Б Один ствол Б
10 70 48 35
12 78 55 40
14 86 62 45
16 95 70 50
18 105 80 58
20 90 66
22 102 75
24 85
26 97

6) Определим общее количество рукавов в выбранной схеме:

  • где NР.СИСТ− число рукавов гидроэлеваторной системы, шт;
  • NМРЛ− число рукавов магистральной рукавной линии, шт.

Примеры решения задач с использование гидроэлеваторных систем

Пример. Для тушения пожара необходимо подать два ствола соответственно в первый и второй этажи жилого дома. Расстояние от места пожара до автоцистерны АЦ−40(130)63б, установленной на водоисточник, 240 м, подъем местности составляет 10 м. Подъезд автоцистерны до водоисточника возможен на расстояние 50 м, высота подъема воды составляет 10 м. Определить возможность забора воды автоцистерной и подачи ее к стволам на тушение пожара.

Решение:

1) Принимаем схему забора воды с помощью гидроэлеватора (см. рис. 3).

Рис. 3 Схема забора воды с помощью гидроэлеватора Г-600

2) Определяем число рукавов, проложенных к гидроэлеватору Г−600 с учетом неровности местности.

NР = 1,2· (L + ZФ) / 20 = 1,2 · (50 + 10) / 20 = 3,6 = 4

Принимаем четыре рукава от АЦ до Г−600 и четыре рукава от Г−600 до АЦ.

3) Определяем количество воды, необходимое для запуска гидроэлеваторной системы.

VСИСТ = NР ·VР ·K = 8· 90 · 2 = 1440 л 2 ) · 20 = [80 − (46 +10 + 6) / 0,015 · 7 2 ] · 20 = 490 м.

Следовательно, насос автоцистерны будет обеспечивать работу стволов т.к. 490 м > 240 м.

7) Определяем необходимое количество пожарных рукавов.

NР = NР .СИСТ + NМРЛ = NР .СИСТ + 1,2 L / 20 = 8 + 1,2 · 240 / 20 = 22 рукава.

К месту пожара необходимо доставить дополнительно 12 рукавов.

Источник

Оцените статью
Разные способы