Водородная энергетика, технологический прогресс и экологическая безопасность в отрасли черной металлургии. Прямое восстановление оксида железа водородом.
Метод прямого восстановления железа водородом в наши дни, как технологический процесс, остался без изменения – специально подготовленная, то есть обогащенная, руда, — концентрат, где содержится основной окисел железа восстанавливается в шахтной печи с помощью твердого топлива, как это было в древности, или для этой цели используется конвертированный газ – природный метан, но преобразованный в смесь водорода и угарного газа (СО).
Как установлено в настоящее время, можно восстанавливать концентраты руды, которые еще не превращены в окатыши. Более того, оказалось, что концентрат восстанавливается даже с большей скоростью, чем изготовленные из него окатыши. Однако на пути к реализации этого процесса стоят трудности чисто технологического характера.
Наиболее интересным способом восстановления оксида железа, является возможность использования водорода в режиме горения. Сам процесс восстановления пойдет достаточно быстро, более того, при этом не возникает лишних примесей: продукт восстановления – железо и вода. Однако получение и хранение водорода сопряжено со множеством чисто технических и экономических трудностей. Поэтому водород пока что используют лишь для получения металлических порошков.
Существует технология среднетемпературного восстановления оксида железа, когда протекает процесс горения и прямого воздействия водорода при температуре 470-8100С. Восстановитель – водород или в чистом виде, или с примесью окиси углерода. Железо, естественно, находится в твердом состоянии, образуя при восстановлении своеобразную губку.
Анализ приведенных выше данных дает основания для следующих выводов:
Среди реакций восстановления оксидов железа водородом только реакция (1.1) является экзотермической. С ростом температуры отношение (%Н2 О) / (%Н2) в равновесной газовой фазе этой реакции будет уменьшаться;
Реакции (1.4), (1.7), (1.10) являются эндотермическими. Поэтому с ростом температуры отношение (%Н2 О) / (%Н2) в равновесной газовой фазе этих реакций будет увеличиваться.
Влияние температуры на изменение состава равновесной газовой фазы для каждой из реакций восстановления оксидов железа водородом показано на рисунке 1 пунктирными линиями.
Следует обратить внимание на то, что кривые, характеризующие составы равновесных газовых смесей для реакций восстановления оксидов железа оксидом углерода и водородом, пересекаются при температуре 8100С. Из анализа реакции водяного газа известно, что при соблюдении условия
Оксид углерода и водород при этой температуре обладают одинаковым химическим сродством к кислороду.
При температурах выше 8100 С водород обладает большим химическим сродством к кислороду. Поэтому при восстановлении оксидов железа водородом объемное содержание восстановителя в газовой фазе может быть меньше, чем при восстановлении оксидом углерода.
При температурах ниже 8100 С более высоким химическим сродством к кислороду обладает оксид углерода.
Конечным продуктом везде являются железо, вода и углекислый газ, причем воду можно снова использовать для получения водорода и кислорода. Таким образом появляются реальные возможности осуществить замкнутый цикл восстановления железа водородом и создать безотходное производство.
Однако до сих пор водород получают двумя испытанными методами – гидролизом воды и ее электролитическим разложением, проще говоря, электролизом. Существует , правда, химическое разложение, более выгодное, но оно не столь распространено, на что имеется ряд чисто технических причин. Поиск новых способов продолжается, ибо важность проблемы несомненна.
Использование водорода для нужд черной металлургии – реальность сегодняшнего дня, и это возможно с применением водородных турбогенераторных установок, созданных на основе научного открытия НППСО «Грантстрой» авторами Аракелян Г.Г., Аракелян А.Г., Аракелян Гр.Г. – ранее неизвестного явления двухстадийного высокотемпературного окисления углеводородов водой (диплом № 425) и изобретения «Способ получения водородсодержащего газа в турбогенераторной установке» (патенты № 117145 от 20 июня 2012 г., № 2269486 от 10 февраля 2006 г., № 2478688 от 10 апреля 2013 г.).
Впервые в мировой практике при проведении научных и опытно – конструкторских работ при испытании водородной турбогенераторной установки нового поколения в соответствии с патентом на изобретение № 2678688, учеными ЗАО НППСО «Грантстрой» было выявлено уникальное новое явление – восстановление окиси железа водородом.
Данное обстоятельство не входило в план и программу лабораторных работ по изучению получения водорода в турбогенераторной установке. При анализе газов, выходящих из водородной турбогенераторной установки, научными работниками была использована промежуточная горизонтальная газоотводящая труба диаметром 279 мм, толщиной стенки 8 мм и длиной 2500 мм, полностью покрытая окисью железа с наружной и внутренней сторон, находившейся около 10 лет под воздействием окружающей среды (осадки и т.д.) (рис.2)
Рис. 2. Начало проведения лабораторных исследований.
Задачами, поставленными перед учеными в данный период испытаний, являлись определение температуры горения водорода на выходе газоотводящей трубы при помощи термопара ТП (предел определения температуры до 1500оС) и анализ газов с применение прибора «Тесто-300». Время проведения эксперимента составило около 35 минут. За этот период было обнаружено, что воздействие водорода при температуре горения 900оС на используемую в данном опыте газоотводящую трубу способствовало процессу восстановления окиси железа в внутренней стороны на 100% по всей толщине и частично с наружной стороны за счет воздействия горючего водорода, который выходил в ограниченном количестве. (рис.3)
Рис. 3. Восстановление окиси железа водородом.
Достоверные факты, опытно-экспериментальные исследования и как показано на Рис.1, что кривые 5, 5а и реакция восстановления оксида железа пересекаются при температуре горения водорода 9000С – все это даёт полное основание заявить о возможности применения водородных турбогенераторных установок в металлургии для восстановления оксида железа водородом с фантастически низкой себестоимостью, что открывает возможность приступить к переработке отходов на рудниках в виде оксида железа, объем которых во всем мире составляет около 1 трлн.250 млрд. тонн, и которые нарушают экологическую стабильность в регионах, активно добывающих и перерабатывающих железную руду.
Предварительные расчеты и первые эксперименты показали: возможность получать водород с такой низкой себестоимостью, что «водородная металлургия» обретет, наконец, надежную экономическую основу с учетом полной экологической безопасности водородного восстановления оксида железа.
Как видно, существует необходимость введения в металлургию прямое водородное восстановление оксида железа, обеспечивающее безотходное производство в черной металлургии.
Прямое водородное восстановление оксида железа – только начало технологического прогресса в черной металлургии. Но и остальные звенья – будь то конвертеры, электропечи, заводы-автоматы, аппараты малооперационной технологии – требуют хорошего исходного сырья. Им будет восстановленный водородом оксид железа.
Металлургию будущего не без основания часто называют водородной. В настоящее время водород обходится дорого. Его получение, хранение и транспортировка сопряжены со множеством чисто технических проблем. Однако произведенные эксперименты и предварительные расчеты показывают, что можно получать водород с такой низкой себестоимостью, используя изобретение ЗАО НППСО «Грантстрой», что «водородная металлургия» обретет надежную экономическую основу. А если учесть полную экологическую безопасность водородных турбогенераторных установок, то сомнение в том, что именно они предопределяют будущее металлургии, открывающее огромные возможности в современном мире.
(В данной статье в том числе использованы материалы с веб сайтов и учебных пособий)
Доктор наук, заслуженный рационализатор-изобретатель РФ, заслуженный строитель России Г.Г. Аракелян
Источник
Способ прямого восстановления окислов железа
Владельцы патента RU 2640371:
Изобретение относится к металлургии, а именно к способам прямого восстановления водородом окислов железа с использованием электроэнергии, и может быть использовано при производстве порошков, компактных металлов и сплавов. Способ включает восстановление измельченной железной руды в среде водорода в проточном режиме с обеспечением выноса образующихся газов непрерывным потоком водорода. При этом руду загружают в реактор в виде кварцевой трубки, закрытой защитным теплоизоляционным кожухом. В качестве газа-восстановителя используют водород, который для интенсификации процесса восстановления окислов и получения равномерного восстановления руды подают через трубку, проходящую через верхнюю часть теплоизоляционного кожуха с обеспечением нагрева водорода до температуры на входе в реактор, составляющей 80-110°С. Осуществляют продувку реактора водородом и удаление кислорода воздуха, нагрев реактора до 900-1000°С, выдержку в режиме восстановления окислов железа, охлаждение реактора и восстановленной железной руды с последующей выгрузкой. 6 ил., 2 табл.
Изобретение относится к металлургии, а именно к способам прямого восстановления водородом окислов железа с использованием электроэнергии. Способ может быть использован при производстве порошков, компактных металлов и сплавов.
Повышение экологических требований, увеличение потребности в металлах высокой чистоты, истощение запасов коксующегося угля и природного газа, развитие технологии получения чистого водорода обуславливают повышение интереса к процессам прямого восстановления железных руд водородом. Согласно исследованиям германских специалистов, из основных инновационных технологий производства стали, на период до 2050 г. наиболее перспективной является технология прямого восстановления железной руды водородом без применения оксида углерода. Данный вывод сделан на основе многокритериального анализа технологий производства стали с применением 12 различных критериев из пяти категорий («Технологии», «Общество и политика», «Экономика», «Безопасность и уязвимость» и «Экология») [Weigel М., Fischedick М., Marzinkowski J., Winzer P. Multicriteria analysis of primary steelmaking technologies // Journal of cleaner production. 2016. Vol. 112. №1. P. 1064-1076].
Известны способы внедоменного получения железа c использованием углеводородов: природного газа [A.c. СССР №1677065, 15.09.1991], смеси пиролизного газа и ацетилена [А.с. СССР №539945, 25.12.1976], каменноугольной смолы [Патент США Д 3844765, 06.03.1973]. К их недостаткам можно отнести науглероживание восстановленного металла, многостадийность процесса, образование вредных отходов (СО2).
Известен также способ прямого восстановления окислов металлов, где газ-восстановитель нагревают восстановленным материалом [А.с. СССР №855000, 15.08.1981]. Реализация способа требует гранулирование шихты из предварительно металлизированного рудного сырья. В способе [Патент СССР №1780520 A3, 07.12.1992] подогрев газа-восстановителя осуществляется теплом нагревателей электропечи, причем температура составляет 600-650°C. В то же время, при режиме процесса восстановления с периодическим напуском воздуха в реактор при загрузке восстанавливаемого материала нагрев водорода выше 300°C нежелателен, так как может привести к взрыву образующейся воздушно-водородной смеси.
Эти известные способы получения металлов восстановлением их оксидов выбраны в качестве прототипа изобретения как наиболее близкие к нему по технической сущности и достигаемому результату.
При реализации способа использовались образцы железных руд из проявления в верховьях реки Мундуруччу (левый приток р. Амга) Ленского рудного поля Республики Саха (Якутия). Руды относятся к бурожелезняковым типам, текстура массивная и кавернозная, реже колломорфная и оолитовая, сложены окислами железа — гетитом, гидрогетитом и окислами марганца — пиролюзитом, псиломеланом и манганином.
Способ прямого восстановления металлов водородом заключается в нагреве подготовленной, то есть измельченной до определенного класса крупности руды в среде газа-восстановителя, в данном случае водорода.
Установка для восстановления в среде водорода (рис. 1) состоит из реактора в виде кварцевой трубки 1, нагревателя 2 в виде нихромовой спирали, намотанной на трубку и закрытой защитным теплоизоляционным кожухом 3, кюветы с восстанавливаемой рудой 4, тепловых экранов 5. Загрузка руды в реактор производится периодически по мере восстановления предыдущей партии. Газ-восстановитель (водород) подается через трубку 6, проходящую через верхнюю часть теплоизоляционного кожуха, в результате теплообмена газ-восстановитель нагревается и его температура на входе в реактор составляет 80-110°C. Температура газа ниже 300°C позволяет избежать взрыва образующейся воздушно-водородной смеси вначале продувки реактора водородом после загрузки новой партии руды. После продувки реактора водородом и удаления кислорода воздуха производится нагрев реактора до 900-1000°C, время выдержки в режиме восстановления окислов составляет около 1 часа, в зависимости от количества руды и температуры реактора.
Внутри реактора в начале зоны восстановления установлена система тепловых экранов из титановой фольги 5, позволяющая производить в результате теплообмена подогрев водорода до температур, близких к температуре реактора. Экраны имеют отверстия для прохождения газа-восстановителя, при этом отверстия соседних экранов выполнены несоосными для увеличения пути прохождения газа по системе тепловых экранов с целью улучшения теплообмена (рис. 1, вид А). Материал экранов (титан) при температурах выше 900°C взаимодействует со следами паров воды и абсорбированных газов, производя дополнительную доочистку газа-восстановителя. Подогрев газа-восстановителя позволяет интенсифицировать процесс восстановления окислов, получить равномерное восстановление рудного материала по всей длине кюветы. Восстановление руды происходит в проточном режиме, образующиеся в процессе восстановления газы выносятся через трубку 7 непрерывным потоком водорода. После окончания выдержки нагрев реактора прекращается, производится охлаждение реактора и восстановленного материала до 150-200°C с последующей выгрузкой материала.
Морфологические исследования частиц рудного материала проведены на образцах восстановленного материала класса крупности — 0,063 мм с помощью растрового электронного микроскопа JEOL JSM — 7800F.
Как видно из рис. 2, а, частицы имеют оскольчатую форму, обусловленную методом получения — механическим измельчением в дисковой мельнице. При большем увеличении (рис. 2, б) наблюдается выраженный рельеф поверхности частиц, образование губчатой поверхности в процессе восстановления в водороде. Частицы имеют высокую пористость вследствие испарения паров воды из их объема при восстановлении окислов железа.
При увеличении в 10000 раз видно (рис. 2, в), что частицы состоят из сросшихся агломерированных более мелких составных частей, поверхность агломерированных субчастиц имеет пластинчатое строение различной степени развитости, толщина пластинок варьируется от десятков до 100 нанометров.
Рентгеноспектральный микроанализ частиц рудного материала класса крупности 0,125-0,063 мм и 1-0,5 мм проведен с помощью энергодисперсионного спектрометра Swift ED 3000 OxfordInstruments, сканирующего электронного микроскопа Hitachi ТМ3030.
Общий вид рудного материала класса крупности 0,125-0,063 мм с участками сканирования микрозондом до и после восстановления показан на рис. 3. Установлено, что до восстановления рудного материала содержание железа составляет 35,05 вес. %, содержание кислорода 39,94 вес. %. После восстановления содержание элементов составило: железа 53,01 вес. %; кислорода 25,50 вес. % (рис. 4), (табл. 1).
Общий вид рудного материала класса крупности 1-0,5 мм с участками сканирования микрозондом до и после восстановления показан на рис. 5. Установлено, что до восстановления рудного материала содержание железа составляет 31,68 вес. %, содержание кислорода 44,33 вес. %. После восстановления содержание элементов составило: железа 51,34 вес. %; кислорода 24,10 вес. % (рис. 6), (табл. 2).
Относительно высокое содержание кислорода можно объяснить повышенным содержанием в руде трудновосстанавливаемых оксидов алюминия и кремния, очистка от которых в последующем осуществляется гравитационными и магнитными методами обогащения.
Способ прямого восстановления окислов железа, включающий восстановление измельченной железной руды в среде водорода в проточном режиме с обеспечением выноса образующихся газов непрерывным потоком водорода, отличающийся тем, что осуществляют загрузку руды в реактор в виде кварцевой трубки, закрытой защитным теплоизоляционным кожухом, подачу водорода в качестве газа-восстановителя через трубку, проходящую через верхнюю часть теплоизоляционного кожуха с обеспечением нагрева водорода до температуры на входе в реактор, составляющей 80-110°С, продувку реактора водородом и удаление кислорода воздуха, нагрев реактора до 900-1000°С, выдержку в режиме восстановления окислов железа, охлаждение реактора и восстановленной железной руды с последующей выгрузкой.