Способ получения водяного пара

Большая Энциклопедия Нефти и Газа

Получение — водяной пар

Получение водяного пара для технических нужд осуществляется в паровых котлах, где при этом поддерживается неизменное давление по манометру в течение всего времени его работы. Обеспечение постоянства давления при испарении жидкости можно проиллюстрировать получением водяного пара в цилиндре с подвижным поршнем ( рис. 106), на наружную поверхность которого действует сила М неизменной величины и направления. [1]

Получение водяного пара в котлах-утилизаторах компенсирует потребности процесса. [2]

Получение водяного пара в технике осуществляется по преимуществу в специальных агрегатах — паровых котлах. [3]

Для получения водяного пара в лаборатории пользуются обыкновенными круглодонными колбами с пароотводом и вертикальной трубкой или, лучше, специальными медными парообразователями ( см. рис. 62, стр. Однако этот способ получения пара не применяется для нагревания легковоспламеняющихся жидкостей ( почему. [5]

Для получения водяного пара в межтрубное пространство испарительного аппарата 9 из емкости 14 питательным насосом 13 перекачивают водяной конденсат или деаэрированную химически умягченную воду. Часть получаемого водяного пара используют на установке для технологических нужд, остальной пар подают в общезаводскую сеть. [6]

Для получения водяного пара применяется химически очищенная вода ( паровой конденсат) после умягчения и деаэрации растворенных в ней кислорода и диоксида углерода с целью уменьшения образования накипи и коррозии системы утилизации. [7]

Для получения водяного пара в конвекционной части печи тяжелого сырья следует использовать 36 труб. [8]

Рассмотрим процесс получения водяного пара из воды. При подводе к воде теплоты при /) const температура ее увеличивается, а удельный объем растет. [9]

Читайте также:  Способы понижения тестостерона у мужчин

Котел-утилизатор предназначен для получения водяного пара за счет использования тепла конвертированного газа после конвертера окиси углерода. Котел-утилизатор — совмещенного агрегата конверсии низкого давления представляет собой аппарат, состоящий из двух вертикальных и одного горизонтального кожухотрубных барабанов. По трубкам барабанов проходит газ, в межтрубное пространство поступает химически очищенная вода. [10]

Котел-утилизатор предназначен для получения водяного пара . Источником подогрева является тепло конвертированного газа. Котел-утилизатор низкого давления состоит из двух вертикальных и одного горизонтального кожухотрубчатых барабанов, соединенных между собой кипятильными трубами. В трубное пространство поступает химически очищенная вода, а в межтрубном проходит газ. Снаружи котел-утилизатор имеет теплоизоляцию. [11]

Парогенератор предназначен для получения водяного пара , имеющего заданные давление и температуру на выходе из парогенератора. [13]

Печь предназначена для получения водяного пара с температурой 140 — 160 С для подогрева продукта в отгонной секции колонны регенерации. В качестве топлива в печи используется природный или нефтяной газ. [14]

Каков промышленный способ получения водяного пара и электроэнергии по циклу Ренкина. [15]

Источник

Получение паров и их параметры

Для получения электрической энергии на Тепловых электрических станциях используют перегретый водяной пар.

Пар может получаться двумя способами: при испарении и при кипении. В процессе испарения молекулы жидкости у ее поверхности, имеющие бόльшую скорость, чем другие молекулы, преодолевают силы молекулярного сцепления, создающие поверхностное натяжение, и вылетают в окружающее пространство. Чем выше температура жидкости, тем более интенсивно происходит испарение.

При кипении частицы пара образуются во всей массе жидкости и, имея меньший удельный вес, чем жидкость, устремляются вверх, соединяясь при этом движении с другими частицами пара и, создавая таким образом клубки. Такие клубки пара, достигая поверхности жидкости, преодолевают силы поверхностного натяжения и вылетают в окружающее пространство, вызывая характерное для процесса кипения бурление.

Этот процесс может происходить лишь при вполне определенной для данного давления температуре воды, называемой температурой насыщения,или кипения, и обозначаемой через или .

В практических условиях пар обычно образуется при постоянном давлении. Такой процесс и рассматривается ниже.

Допустим, что 1 кг воды при 0 о С заключен в цилиндре с подвижным поршнем, нагруженным постоянным грузом с общим весом Р (рис. 5.1, положение 1). В первой стадии получения пара вода подогревается от 0 о С до температуры насыщения , соответствующей данному давлению. Если при температуре 0 о С удельный объем воды был v0, то при нагревании до температуры он увеличится до объема v’ (предполагая условно, что парообразования в этой стадии не было). Этот объем воды называется удельным объемом жидкости (рис. 5.1, положение 2). При дальнейшем нагревании наступает вторая стадия, когда кипящая вода постепенно переходит в пар (рис. 5.1, положение 3). Пар, образующийся из кипящей воды называется насыщенным, практически же он является влажным насыщенным, или, сокращенно, просто влажным. Этот пар представляет собой смесь собственно сухого пара с капельками воды, увлеченными из нее при кипении. В процессе кипения количество пара в цилиндре увеличивается, а воды – уменьшается до тех пор, пока последняя капля воды не превратится в пар. В этот момент пар становится сухим насыщенным, называемым сокращенно просто сухим (рис. 5.1, положение 4).

Рис. 5.1. Стадии получения перегретого пара

Влажный пар характеризуется степенью сухости х. Степенью сухости называется отношение веса сухого пара к общему весу влажного пар. Численно степень сухости равна весу сухого насыщенного пара в килограммах, содержащемуся в 1 кг влажного пара. Например, если влажный пар имеет степень сухости х = 0,85, то это значит, что 1 кг его содержит 0,85 кг сухого пара и 0,15 кг воды. Величина (1 – х) называется степенью влажности пара. В приведенном примере она равна 0,15. Чем пар суше, тем его степень сухости больше; для сухого пара х = 1, для воды х = 0.

Так как объем пара всегда больше объема воды, из которой он получился, то с увеличением степени сухости пара удельный объем влажного пара vх также увеличивается и при степени сухости х = 1 становится равным удельному объему сухого пара (рис. 5.1, положение 4). Следовательно, v ’

Если к сухому пару подводить теплоту при постоянном давлении, то он становится перегретымпаром. Процесс перегрева является третьей стадией парообразования, сопровождающийся повышением температуры пара и увеличением его удельного объема (рис. 5.1, положение 5).

Температура перегретого пара обозначается через t, а удельный объем его через v. Из сказанного следует, что перегретым называется пар, имеющий температуру выше температуры воды, из которой он получился. Разность называется степенью перегрева, или перегревом. Чем выше температура перегретого пара, тем больше перегрев и удельный объем v.

Перегретый пар в турбину
Первичный воздух
Вторичный воздух
Уходящие газы
Холодный воздух
Питательная вода
Пар с турбины
Вторично перегретый пар в турбину

Рис. 5.2. Практический способ получения перегретого пара.

Схема барабанного котла с естественной циркуляцией:

1 – топочная камера; 2 топочные экраны; 3 – горелки; 4 – опускные трубы;

5 – барабан; 6 радиационный пароперегреватель; 7 – конвективный пароперегреватель; 8 – промежуточный перегреватель; 9–экономайзер;

10 – конвективный газоход; 11 – воздухоподогреватель

Перегретый пар по сравнению с насыщенным имеет следующие преимущества. Во-первых, отнятие теплоты от перегретого пара связано только с уменьшением его температуры и удельного объема, конденсации же пара при этом не происходит. В ряде случаев, когда влажный пар отдает теплоту (например, в трубопроводах, в цилиндре паровой машины или турбины), конденсация его влечет за собой ряд нежелательных явлений, поэтому указанное свойство перегретого пара является очень важным. Во-вторых, теплопроводность перегретого пара меньше, чем влажного, вследствие чего он медленнее теряет теплоту, чем насыщенный пар. Благодаря указанным свойствам в теплотехнике в основном используют перегретый пар, хотя в некоторых случаях, наоборот, бывает предпочтительнее влажный пар.

Итак, процесс парообразования в общем случае можно разделить на три стадии: 1) подогрев воды до температуры насыщения; 2) испарение (парообразование) кипящей воды и, наконец, 3) превращение сухого пара в перегретый. При этом сухой пар является границей между влажным и перегретым паром. Такое состояние пара крайне неустойчиво, так как даже при самом незначительном подводе или отводе теплоты он превращается или в перегретый или во влажный пар.

Из рассмотренного процесса парообразования следует также, что в присутствии воды пар может быть только влажным. Такой пар при подводе к нему теплоты становится суше, оставаясь все-таки влажным. Перегретый пар можно получить только в том случае, если он не будет соприкасаться с водой. Практически в теплотехнике перегретый пар получается в особых устройствах, называемых пароперегревателями. Схема получения такого пара указана на рис. 5.2. На нем цифрой 1 обозначена топка парового котла, в которой происходит превращение воды во влажный пар. Этот пар отводится из топки по топочным экранам 2 в барабан котла 5, в котором происходит отделение пара от воды. И далее сухой пар из барабана котла направляется в трубчатые змеевики 6, 7, являющиеся пароперегревателями. Пароперегреватели обогреваются горячими газами, идущими из топки котла (уходящими газами). Так как пароперегреватель все время сообщен с паровым пространством котла, то давление пара в пароперегревателе приблизительно такое же, как и в котле.

Источник

Способ получения водяного пара

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2142905

Имя изобретателя: Ермаков Виктор Григорьевич
Имя патентообладателя: Ермаков Виктор Григорьевич
Адрес для переписки: 614037, Пермь, ул.Мозырская, д.5, кв.70 Ермакову Виктору Григорьевичу
Дата начала действия патента: 1998.04.27

Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии. Получают в незамкнутом пространстве перегретый водяной пар с температурой 500-550oC. Перегретый водяной пар пропускают через постоянное электрическое поле высокого напряжения (6000 В) с получением водорода и кислорода. Способ прост в аппаратурном оформлении, экономичен, пожаро- и взрывобезопасен, высокопроизводителен.
ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Водород при соединении с кислородом-окислении, занимает первое место по калорийности на 1 кг топлива среди всех горючих используемых для поучения электроэнергии и тепла. Но высокая калорийность водорода до сих пор не используется в получении электроэнергии и тепла и не может конкурировать с углеводородным топливом.

Препятствием для использования водорода в энергетике является дорогой способ его получения, который экономически не оправдывается. Для получения водорода в основном применяются электролизные установки, которые малопроизводительны и энергия, затраченная на получение водорода, равна энергии, полученной от сжигания этого водорода.

Известен способ получения водорода и кислорода из перегретого водяного пара с температурой 1800-2500oC, описанный в заявке Великобритании N 1489054 (кл. C 01 B 1/03, 1977). Этот способ сложен, энергоемок и трудноосуществим.

Наиболее близким к предложенному является способ получения водорода и кислорода из водяного пара на катализаторе при пропускании этого пара через электрическое поле, описанный в заявке Великобритании N 1585527 (кл. C 01 B 3/04, 1981).

К недостаткам этого способа относятся:

невозможность получения водорода в больших количествах;

сложность устройства и использование дорогих материалов;

невозможность осуществления этого способа при использовании технической воды, т. к. при температуре насыщенного пара на стенках устройства и на катализаторе будут образовываться отложения и накипь, что приведет к ее быстрому выходу из строя;

для сбора полученных водорода и кислорода используются специальные сборные емкости, что делает способ пожаро- и взрывоопасным.

Задачей, на которую направлено изобретение, является устранение вышеуказанных недостатков, а также получение дешевого источника энергии и тепла.

Это достигается тем, что в способе получения водорода и кислорода из пара воды, включающем пропускание этого пара через электрическое поле, согласно изобретению используют перегретый пар с температурой 500-550oC и пропускают его через электрическое поле постоянного тока высокого напряжения, вызывая тем самым диссоциацию пара и разделение его на атомы водорода и кислорода.
ПРЕДЛОЖЕННЫЙ СПОСОБ ОСНОВАН НА СЛЕДУЮЩЕМ

Электронная связь между атомами водорода и кислорода ослабевает пропорционально повышению температуры воды. Это подтверждается практикой при сжигании сухого каменного угля. Перед тем как сжигать сухой уголь, его поливают водой. Мокрый уголь дает больше тепла, лучше горит. Это происходит от того, что при высокой температуре горения угля вода распадается на водород и кислород. Водород сгорает и дает дополнительные калории углю, а кислород увеличивает объем кислорода воздуха в топке, что способствует лучшему и полному сгоранию угля.

Температура воспламенения водорода от 580 до 590oC, разложение воды должно быть ниже порога зажигания водорода.

Электронная связь между атомами водорода и кислорода при температуре 550oC еще достаточна для образования молекул воды, но орбиты электронов уже искажены, связь с атомами водорода и кислорода ослаблена. Для того, чтобы электроны сошли со своих орбит и атомная связь между ними распалась, нужно электронам добавить еще энергии, но уже н

Источник

Оцените статью
Разные способы