Способ получения сжиженных газов

Получение и использование сжиженных газов (стр. 1 из 2)

1. Природа явления и свойства сжиженных газов

2. Способы получения сжиженных газов

3. Использование сжиженных газов

Список используемой литературы

Любой газ можно превратить в жидкость простым сжатием, если температура газа ниже критической. Поэтому деление веществ на газы и жидкости в значительной мере условно. Те вещества, которые мы привыкли считать газами, просто имеют очень низкие критические температуры, то есть температуры, после достижения которых, газ приобретает свойства жидкости, и поэтому при температуре, близкой к комнатной, не могут находиться в жидком состоянии. Наоборот, у веществ, причисляемых нами к жидкостям, критические температуры велики.

Первый газ (аммиак) был обращён в жидкость уже в 1799 г. Дальнейшие успехи в сжижении газов связаны с именем английского физика М. Фарадея (1791 – 1867), который сжижал газы путём их одновременного охлаждения и сжатия. Ко второй половине 19 века из всех известных в то время газов остались не сжиженными только шесть: водород, кислород, азот, оксид азота, оксид углерода и метан, — их назвали постоянными газами. Задержка в сжижении этих газов ещё на четверть столетия произошла потому, что техника понижения температуры была развита слабо, и они не могли быть охлаждены до температуры ниже критической. Когда физики научились получать температуры порядка 1 К, удалось все газы обратить не только в жидкое, но и в твёрдое состояние. [1]

Целью данной работы является рассмотрение природы явления и свойств сжиженных газов, а также изучение способов получения и использования таких газов. Тема работы актуальна на сегодняшний день, так как сжиженные газы востребованы во многих областях медицины, науки и техники.

1. Природа явления и свойства сжиженных газов

Непрерывные хаотические тепловые движения, в которых всегда участвуют частицы любого вещества и интенсивность (энергия) которых определяет его температуру, оказывают существенное влияние на все происходящие в веществе явления. Именно поэтому почти всякое свойство вещества, так или иначе, зависит от температуры, то есть от интенсивности тепловых движений частиц в нём.

Изучение свойств вещества при очень низких температурах, когда молекулярные движения ослаблены, представляет большой интерес. Только при низких температурах можно исследовать те или иные явления в условиях, когда постоянный фон тепловых движений не влияет на них.

При низкотемпературных исследованиях изучаемое тело приводят в контакт с телом достаточно низкой температуры, с так называемым хладагентом. Задачей техники низких температур и является создание таких хладагентов. Ими обычно являются различные сжиженные газы, находящиеся в состоянии кипения. Они особенно удобны тем, что контакт с охлаждаемым телом не изменяет их температуру, а приводит лишь к более интенсивному испарению. Именно сжижение газов открыло для исследования область низких температур, в том числе и самых низких – близких к абсолютному нулю.

Всякий газ может быть переведён в жидкое состояние, но необходимым условием для этого является предварительное охлаждение газа до температуры ниже критической. Углекислый газ, например, можно сжижить при комнатной температуре, поскольку его критическая температура равна 31,1єС. То же, можно сказать и о таких газах, как аммиак и хлор.

Но есть и такие газы, которые при комнатной температуре нельзя перевести в жидкое состояние. К таким газам относятся воздух (а также его составные части – азот, кислород и аргон), водород и гелий, у которых критические температуры значительно ниже комнатной. Для сжижения таких газов их необходимо предварительно охладить до температуры несколько ниже критической, после чего повышением давления газ может быть переведён в жидкое состояние. Сжиженные таким образом газы удобнее хранить под атмосферном давлении (в открытом сосуде), но в этом случае их температура должна быть ещё более низкой – такой, при которой давление будет равно 1 атм. Для азота температура хранения соответствует 77,4 К, в то время как критическая температура азота равна 126,1 К. Для кислорода эти цифры соответственно равны 90 К и 154,4 К, для водорода 20,5 К и 33 К и для гелия 4,4 К и 5,3 К. Эти четыре газа широко используются практически, в том числе и как хладагенты.

Читайте также:  Офсетный крючок способы насадки

Из приведенных цифр, как критических температур, так и тех конечных температур, до которых должны быть охлаждены сжижаемые газы, видно, что охлаждение требуется весьма значительное. Для достижения столь сильного охлаждения обычно используются два метода (по отдельности и комбинированно), которые будут рассмотрены далее. [2]

2. Способы получения сжиженных газов

Первый метод сжижения газа связан с использованием эффекта Джоуля – Томсона. Видоизменение опыта по расширению газа, предложенное Джоулем и Томсоном, позволяет достичь заметного изменения температуры газа, в частности охлаждения, обусловленного его неидеальностью, так как расширение идеального газа в пустоту не сопровождается изменением его температуры. Газ при достаточно большом, но постоянном давлении вынуждают протекать через теплоизолированную пористую перегородку. Это значит, что протекание газа происходит адиабатно. Гидродинамическое сопротивление перегородки приводит к тому, что на ней теряется часть давления газа и газ выходит из перегородки при более низком давлении. Газ расширяется или дросселируется. Дросселем называется любое устройство, представляющее сопротивление для протекания газа. Для того, чтобы течение газа было стационарным, то есть происходило при постоянных значениях давлений по обе стороны дросселя, необходим какой-либо насос (компрессор), который поддерживал бы постоянными эти давления. Этот компрессор производит внешнюю работу сжатия газа. Этим процесс дросселирования отличается от расширения газа в пустоту, при котором внешняя работа равна нулю. Явление изменения температуры газа при его адиабатном расширении дросселированием от одного постоянного давления к другому называется эффектом Джоуля – Томсона. Изменение температуры неидеального газа в процессе Джоуля – Томсона объясняется тем, что при расширении газа увеличивается расстояние между молекулами и, следовательно, совершается внутренняя работа против сил взаимодействия между молекулами. За счёт этой работы изменяется кинетическая энергия молекул, а, следовательно, и температура газа. В идеальном газе, где силы взаимодействия молекул равны нулю, эффекта Джоуля – Томсона нет.

В исторически первой машине для сжижения газов (воздуха) в технических масштабах (Линде и Гэмпсон, 1895 г.) для охлаждения газов ниже критической температуры и последующего сжижения использовался метод дросселирования. Приведём схему машины Линде (рис.1), в которой помимо эффекта Джоуля – Томсона был применён важный конструктивный принцип противоточного теплообмена и теперь применяемый во всех ожижительных машинах.

Воздух поступает в компрессор K, в котором он сжимается до 200 атм. После этого он проходит через змеевик, охлаждаемый проточной водой, где он отдаёт тепло, выделившееся при сжатии. Таким образом, в дальнейший путь к сжижению идёт сжатый газ с температурой такой же, как и до сжатия. Этот газ проходит затем через змеевик ab к дроссельному вентилю (крану) V1 и расширяется через него в приёмник f до давления в 1 атм. При этом расширении газ несколько охлаждается, но не настолько, чтобы превратиться в жидкость. Охлаждённый, но не сжижавшийся газ возвращается затем обратно через змеевик cd. Оба змеевика, ab и cd, расположены друг относительно друга так, что между ними, а также между порциями газа, проходящими по ним, существует тепловой контакт. Благодаря этому испытавший расширение и охлаждение газ охлаждает идущую ему навстречу порцию сжатого газа, которой ещё предстоит расшириться через вентиль V1. В этом и заключается метод противоточного обмена теплом.

Рис.1. Схема машины Линде

Ясно, что вторая порция газа подойдёт к расширительному вентилю V1, имея более низкую температуру, чем первая, а после дросселирования она ещё больше понизиться. Таким образом, к вентилю будет подходить всё более холодный газ. Через некоторое время после начала работы машины постепенное охлаждение газа холодными встречными потоками приведёт к тому, что газ при очередном дросселировании начнёт частично сжижаться и накапливаться в приёмнике f, откуда он может быть слит через кран V2 в сосуд для хранения сжиженных газов (сосуд Дьюара).

Читайте также:  Пирожки все способы лепки

При установившимся процессе работы машины в разных её местах наблюдаются приблизительно такие температуры: у входа в змеевик ab температура 293 К (комнатная); на выходе из этого змеевика 170 К; после дросселирования 80 К, у входа в змеевик cd 80 К; на выходе из него – комнатная температура. Давление перед вентилем 200 атм, после дросселирования 1 атм.

Устройство, включающее оба змеевика ab и cd, в котором происходит охлаждение газа встречным потоком охлажденного газа, называется теплообменником. В машине Линде теплообменник осуществляется в виде вставленных одна в другую трубок, которым вместе придавалась форма змеевика. Газ высокого давления поступает по внутренней трубке. Встречный поток охлаждённого газа низкого давления проходит по внешней трубке, омывая внутреннюю и охлаждая, таким образом, газ в ней.

Второй метод сжижения газов называется методом Клода, он основан на методе адиабатного расширения в детандерах. Рассмотрим его принципиальное отличие от метода Линде.

При дросселировании газа охлаждение достигается за счёт внутренней работы, совершаемой газом против сил притяжения между молекулами. Как известно, охлаждение газа происходит и в том случае, когда он адиабатно расширяется, совершая внешнюю работу. Газ, расширяясь и совершая при этом работу, уменьшает свою внутреннюю энергию, а значит, и температуру. Это в равной мере относится и к идеальному, и к реальному газам. Причиной охлаждения газа при совершении им внешней работы является уменьшение скоростей молекул при их ударах об удаляющийся от них поршень, которому они передают часть своей кинетической энергии. Охлаждение при адиабатном расширении с совершением внешней работы должно быть более эффективным, чем при дросселировании, так как адиабатное расширение – процесс обратимый, в то время как эффект Джоуля – Томсона – процесс необратимый. А, как известно, обратимость процессов в машине обеспечивает большой коэффициент полезного действия. Часть, в которой происходит расширение газа, называется детандером.

Источник

Сжиженные газы. Методы производства

Смеси углеводородов (пропана, пропилена, бутана, бутилена и небольших количеств этана и этилена), находящихся при относительно небольших давлениях или при пониженных температурах в жидком состоянии, а при нормальных условиях — газообразном, составляют группу сжиженных углеводородных газов. Их хранят и транспортируют в жидком, а используют в газообразном виде. Сырьем для производства сжиженных газов являются попутные нефтяные газы, жирные газы газоконденсатных месторождений и газы переработки нефти* Сжиженные газы могут иметь и искусственное происхождение.

Поскольку попутный нефтяной газ представляет собой многокомпонентную смесь из легких и тяжелых углеводородов, то задачей газобензинового производства является разделение этой смеси на следующие отдельные фракции:

  • Этан — Отбензиненный газ;
  • Бутан — Сжиженный газ;
  • Пентан — Газовый бензин.

Технология такого разделения основана на различной упругости насыщенных паров (рис. 1.2) и на различии в давлениях конденсации отдельных компонентов смеси. При изменениях температуры или объема такой двухфазной системы (пар — жидкость) равновесие ее нарушается и тут же восстанавливается. Например, при постоянстве температуры сжатие паровой фазы приводит к конденсации части паров, а при увеличении объема испаряется часть жидкости. В обоих случаях давление паровой фазы, соответствующее данной температуре, остается неизменным.

Аналогично при сохранении постоянства объема паровой фазы повышение температуры сопровождается испарением части жидкости с соответствующим повышением давления, т. е. упругости насыщенных паров углеводорода. Охлаждение двухфазной системы при неизменности объема влечет понижение упругости насыщенных паров.
Промышленными методами производства сжиженных газов являются компрессионный, адсорбционный и абсорбционный. Принципиальная сущность технологии этих способов может быть рассмотрена на упрощенных схемах соответствующих установок.

Компрессионный метод основан на различии давлений и температур конденсации отдельных компонентов смеси углеводородных газов, составляющих попутный нефтяной газ. В этом случае исходный попутный газ (рис. 1.3) после очистки в сепараторе 1 от взвешенных частиц нефти, влаги и пыли сжимается в компрессоре 2 до давления 17—20 кгс/см 2 и затем последовательно охлаждается в конденсаторах 3 и 5. В процессе первой стадии охлаждения из смеси конденсируются и собираются в сепараторе сырого бензина 4 наименее упругие пары пентана, в конденсаторе 5 конденсируются пары пропана и бутана. После разделения в сепараторе 6 сконденсированные пропан и бутан поступают в емкости сжиженного газа, а сохранившие газообразное состояние метан и этан по газопроводу отбензиненного газа направляются к потребителю.

Читайте также:  Погасительная давность это способ установления права собственности

Адсорбционный (углепоглотителъный) метод основан на способности некоторых твердых пористых тел (активированного угля, силикагеля и др.) избирательно удерживать (адсорбировать) на поверхности пор и микропор тяжелые углеводороды и выделять их при последующем нагреве и увлажнении. Основным аппаратом адсорбционной установки (рис. 1.4) является адсорбер 1, заполненный активированным углем. Очищенный исходный попутный газ проходит в адсорбере снизу вверх через слой угля и насыщает его поры тяжелыми углеводородами, а легкие углеводороды — метан и этан, не осевшие в порах угля, выходят из адсорбера в газопровод отбензиненного газа. По окончании насыщения угля углеводородами через адсорбер сверху вниз подается водяной пар, который, нагревая и увлажняя уголь, осуществляет десорбцию тяжелых углеводородов и уносит их в виде паров. Пары воды и углеводородов проходят через конденсатор 2 и поступают в сепаратор 3, в нижней части которого скапливается конденсат водяного пара, над ним — более легкий конденсат пентана, а в паровом пространстве — пары пропана и бутана. Через регуляторы уровня вода из сепаратора сбрасывается в канализацию, пентан — в емкости сырого бензина, а пары пропана и бутана поступают под купол газгольдера 4. По мере скопления в газгольдере пары пропана и бутана сжимаются компрессором 5 до 17—20 кгс/см 2 и после охлаждения в конденсаторе 6 накапливаются в виде конденсата в сепараторе сжиженного газа 7, а из него периодически перемещаются в сборные емкости.

Для восстановления адсорбционной активности угля его надо просушить и охладить. Для этого дутьевой вентилятор 8 нагнетает в адсорбер выбрасываемые через свечу 10 горячий воздух, нагреваемый в калорифере 9, а затем — холодный воздух, пропускаемый помимо калорифера. Непрерывность действия установки обеспечивается комплектованием групп адсорберов, по три в каждой. Это позволяет одновременно осуществлять в группе все основные операции: адсорбцию, десорбцию и регенерацию активных адсорбционных свойств угля.

Абсорбционный (маслопоглотителъный) метод основан на способности масел (например, солярового) в холодном виде избирательно растворять в себе (абсорбировать) тяжелые углеводороды, а при нагревании выделять их обратно.

Очищенный попутный нефтяной газ (рис. 1.5) поступает в нижнюю часть абсорбера 1, представляющего собой колонну с тарельчатыми насадками, в которой снизу вверх движется газ, а противотоком сверху вниз стекает по тарелкам масло. Конструкция тарелок обеспечивает хороший контакт газа с маслом, в результате чего масло растворяет основную массу тяжелых углеводородов. Легкие углеводороды поступают в верхнюю часть абсорбера и по газопроводу отбензиненного газа направляются к потребителю. Скапливающееся в нижней части абсорбера масло, насыщенное углеводородами, подается в подогреватель 2, затем десорбер 3. Выделяющиеся из нагретого масла тяжелые углеводороды поступают в компрессор 4, где сжимаются до 17—20 кгс/см 2 . Охлаждаются они в две стадии — в конденсаторах 5 и 7. После первой стадии в сепараторе 6 сырого бензина накапливается жидкий пентан, а в сепараторе 8 — сжиженная пропан-бутановая фракция. Освободившееся от углеводородов нагретое масло из нижней части десорбера 3 насосом 9 перекачивается через холодильник 10 в верхнюю часть абсорбера 1 для повторения цикла.

Из рассмотренных методов в газобензиновом производстве наиболее распространен метод масляной абсорбции, отличающийся простотой установки, большой производительностью и достаточно высокой степенью извлечения тяжелых углеводородов из исходных газов.

Источник: « Основы газоснабжения » Н.А. Скафтымов

Источник

Оцените статью
Разные способы