Способ получения синтетических материалов
фохрсе еэиаФ рт у е4 т 14 е — т ° 4е фч (иблиафен .. . Ь
К АВТОРСКОМУ СВИДЕТЕЛЬСТВ;
Зависимое от авт. свидетельства ¹ 173927
Заявлено 20.Х11.1967 (¹ 1205228/23-5)
Приоритет I I.IX.1967, ВП 39ц/127116, ГДР
Комитет по аеле1е изобретений и открытий при Совете Министров
УДК 678.683.2 (088.8) Опубликовано 15.1.1971. Бюллетень хЪ 5
Дата опубликования описания 27.III.1971
Теодор Baar (I ерманская Демократп 1сская Республика) Иностранное предприятие
«ФЕБ Фарбенфабрик Вольфен» (Германская Демократп 1еская Республика) Заявитель
СПОСОБ ПОЛУЧЕНИЯ СИ НТЕТИЧ ЕС1(ИХ 1ЧАТЕРИАЛОВ
Изобретение относится к области получения синтетических материалов на основе моноди- или тримстилолацетонов или их термических предконденсатов.
Целью изобретения является получение эластичных и жестких пенопластов с повышенной прочностью на истирание. Для этого в реакционную смесь, состоящую из моноди- или триметилолацетона или их смеси и катализатора-отвердителя — 10 — 60Р(>-ного раствора NaOH или КОН, добавляют параформальдегид или триоксан в таком количестве, что па 1 моль метилолацетона приходится от 1 до 4 моль формальдегида.
В зависимости от количества добавленного формальдегида получают как жесткие, так и эластичные синтетические материалы, которые получаются в виде компактных масс или в виде пенопластов путем вспенивания при самонагревапии с применением катализатораотвердителя.
Было установлено, что при применении большого количества формальдегида получаются более мягкие и эластичные продукты.
Путем одновременного добавления полигликолей можно достичь дополнительного размягчения, а за счет поверхностно-активных соединений — равномерной пены. Возможно применение наполнителей различного типа (14àìå1èoé пыли, древесных опилок, асбсстоьой ткани и т. д.).
Пример 1. 1000 г технического диметплолацетона нагревают с 200 г параформальдсгида до 50 — 60″С при перемешивании.
Затем добаьляют 20 г этоксилированного жирного спирта с длиной цепи от С1р до CI4 и прп псремешиванип быстро добавляют
100 лл 50″, р-ного раствора едкого патра.
10 Спустя 30 сек смесь начинает быстро вспепиваться, и масса нагревается до 103 — 105 C.
Спустя несколько секунд смесь затвердевает до образовашгя мягкой и густоволокнистой пепы. ГIлотпость в сыром виде составляет от
15 35 до о0 кг/.11:1.
ГI р и м с р 2. 1000 г тех1шческого диметплолацетона 11агрсвают с 600 г параформальдсгпда до 60 — 70 С. При перемешивании образуется прозрачньш раствор, который за20 тем охлаждают. Вслед за этим, как и в примере 1, добавляют этоксплпрованные жирные спирты и прп интенсивном перемешивании быстро добаилгнот 125 лл 50,р-ного раствора едкого IIBTp3. Сп стя несколько секунд масса
25 нагреьается до 100 — 110 С и быстро вспенив ается.
I ели пенящуюся массу вылить в форму, то опа затвердевает в мелкоячеистую, вязкую пену с плотностью в сыром виде от 15 до
Составитель И. Гинзбург
Редактор Е. П. Хорина Тсхрсд Л. Я, Левина
Коррсктор Г. С. Мухина
Изд. ¹ 249 Заказ 538 !5 Тираж 473 Подписное
Ц1-!И11ПИ Когиитста по делам изобрстсиий и открытий при Совете Министров СССР
Москва, К-35, Раушская иаб., д. 4/5
Типографии, ир. Сапунова, 2
Пример 3. 1000 г технического диметилолацетона нагревают с 600 г параформальдегида до 60 — 70 С. При перемешивании образуется прозрачный раствор, который затем охлаждают. Как и в примере 1, добавляют этоксилированпые жирные спирты и затем добавляют 150 г этиленполигликоля. После быстрого смешивания с 80 лл 50о о-ного раствора едкого патра массу наносят на подкладку из ткани. Спустя 5 — 6 час образуется эластичный продукт. Нарезанная полосами масса может применяться для уплотнения, например, швов па стройке.
Способ получения синтетических материалов по авт. св. ¹ 173927, отлича ощийся тем, что в реакциош!ую смесь добавляют параформальдегид или триоксан в таком количещ стве, что на 1 ноль метилолацетона приходится от 1 до 4 моль формальдегида.
Источник
Полимеры
Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.
Высокомолекулярные вещества, состоящие из больших молекул цепного строения, называются полимерами (от греч. «поли» — много, «мерос» — часть). |
Например , полиэтилен, получаемый при полимеризации этилена CH2=CH2:
…-CH2-CH2-CH2-CH2-CH2-CH2-CH2-… или (-CH2—CH2-)n
Молекула полимера называется макромолекулой (от греч. «макрос» — большой, длинный). Молекулярная масса макромолекул достигает десятков — сотен тысяч (и даже миллионов) атомных единиц.
Соединения, из которых образуются полимеры, называются мономерами.
Например , пропилен (пропен) СН2=СH–CH3 является мономером полипропилена
Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.
Мономеры – низкомолекулярные вещества, из которых образуются полимеры. |
Степень полимеризации – число, показывающее количество элементарных звеньев в молекуле полимера.
Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n.
Классификация полимеров
Полимеры, макромолекулы которых построены строго определенным способом, называют регулярными.
Полимер называется стереорегулярным, если заместители R в основной цепи макромолекул (–CH2–CHR–)n расположены упорядоченно.
Стереорегулярные полимеры обладают гораздо лучшими свойствами – пластичностью, прочностью и теплостойкостью; они способны кристаллизоваться, в отличие от нерегулярных.
Классификация по структуре
По структуре полимеры делятся на: линейные, разветвленные и пространственные.
Линейные | Разветвленные | Пространственные |
Состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру. Целлюлоза, полиэтилен низкого давления, капрон | Макромолекулы разветвленных имеют боковые ответвления от цепи, называемой главной или основной Химические связи имеются и между цепями, образуя пространственную структуру Резина, фенолформальдегидные смолы |
Линейные — макромолекулы состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру (целлюлоза, полиэтилен низкого давления, капрон).
Разветвленные — макромолекулы которых имеют боковые ответвления от цепи, называемой главной или основной (крахмал).
Сетчатые (пространственные) — химические связи имеются и между цепями (резина, фенолформальдегидные смолы).
Классификация по происхождению
По способу получения полимеры делятся на: природные, синтетические и искусственные.
Природные волокна | Синтетические волокна | Искусственные |
Непосредственно существуют в природе
| Получают полностью химическим путем в реакциях полимеризации и поликонденсации
| Получают модификацией натуральных полимеров
|
Природные полимеры непосредственно существуют в природе (крахмал, целлюлоза и др.).
Синтетические полимеры получают полностью химическим путем в реакциях полимеризации и поликонденсации (полиэтилен, полихлорвинил, фенол-формальдегидные смолы, метилметакрилат и т.д.). Не имеют аналогов в природе.
Искусственные – получают модификацией натуральных полимеров (вискоза –модифицированная целлюлоза, резина –модификация натурального каучука).
Классификация по химическому характеру
По химическому характеру и составу полимеры и химические волокна бывают: полиэфирные, полиамидные, элементоорганические (например, кремнийорганические полимеры).
Полиэфирные полимеры | Полиамидные полимеры | Элементоорганические |
Содержат группу -СОО- Лавсан (полиэтилентерефталат) | Содержат группу -СО-NH2— Найлон, капрон | Содержат атомы других хим. элементов (кремний и др.). Кремнийорганические полимеры |
Полиэфирные полимеры — содержат группу сложных эфиров -СОО-.
Полиамидные полимеры — содержат пептидную связь -СО-NH2-.
Элементоорганические полимеры — содержат атомы других химических элементов (помимо С, Н, О, N).
Классификация по способу получения
Полимеры получают либо реакциями полимеризации, либо поликонденсацией.
Полимеризация | Поликонденсация |
Это присоединение одних молекул к другим за счет разрыва кратных связей. Побочные продукты, как правило, не образуются. Полиэтилен, полипропилен и др. | Образование полимера происходит за счет реакции замещения. При этом образуется низкомолекулярный побочный продукт. Фенолформальдегидная смола, капрон |
Полимеризация — процесс образования высокомолекулярного вещества(полимера) путём многократного присоединения молекул мономера к активным центрам в растущей молекуле полимера. |
Например , образование полиэтилена происходит по механизму полимеризации:
Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов (обычно это вода). |
Например , образование капрона протекает по механизму поликонденсации:
Свойства полимеров
По свойствам полимеры можно разделить на: термореактивные, термопластичные и эластомеры.
Термореактивные | Термопластичные | Эластомеры |
Неплавкие и неэластичные материалы. Фенолформальдегидные смолы, полиуретан | Меняют форму при нагревании и сохраняют её. Полиэтилен, полистирол, поливинилхлорид | Эластичные вещества при разных температурах. Натуральный каучук, полихлоропрен |
Термореактивные полимеры — пластмассы, переработка которых в изделия сопровождается необратимой химической реакцией, приводящей к образованию неплавкого и нерастворимого материала.
Например , фенолформальдегидные смолы, полиуретан.
Термопластичные полимеры — меняют форму в нагретом состоянии и сохраняют её после охлаждения.
Например , полиэтилен, полистирол, полихлорвинил и т.д.
Эластомеры – обладают высокоэластичными свойствами в широком интервале температур.
Например , натуральный каучук.
Полимеризация и поликонденсация
Полимеризация
Степень полимеризации — это число, показывающее сколько молекул мономера соединилось в макромолекулу.
Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n
Характерные признаки полимеризации.
|
Катализаторами полимеризации могут быть: металлический натрий, пероксиды, кислород, металлоорганические соединения, комплексные соединения.
Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией.
Например , схема сополимеризации этилена с пропиленом:
Важнейшие синтетические полимеры
Изображение с портала orgchem.ru
Важнейшие синтетические полимеры, получаемые реакцией полимеризации, и области их применения:
Полимер | Мономер | Характеристики полимера | Применение полимера |
Полиэтилен (–СН2–СН2–)n | Этилен СН2=СН2 | Синтетический, линейный, термопластичный, химически стойкий | Упаковка, тара |
Полипропилен | Пропилен СН2=СН–СН3 | Синтетический, линейный, термопластичный, химически стойкий | Трубы, упаковка, ткань (нетканый материал) |
Поливинилхлорид | Винилхлорид СН2=СН–Сl | Синтетический линейный полимер, т ермопластичный | Натяжные потолки, окна, пленка, трубы, полы, изолента и т.д |
Полистирол | Стирол | Синтетический линейный полимер, термопластичный | Упаковка, посуда, потолочные панели |
Полиметилметакрилат Метиловый эфир метакриловой кислоты | Синтетический линейный полимер, т ермопластичный | Очки, корпуса фар и светильников, душевые кабины, мебель и т.д | |
Тефлон (политетрафторэтилен) | Тетрафторэтилен | Синтетический линейный полимер. Термопластичный (t = 260-320 0 C) Обладает очень высокой химической стойкостью | Посуда, пластины утюгов, ленты и скотч, упаковка, изоляция |
Искусственный каучук Мономер: бутадиен-1,3 (дивинил) | Синтетический, линейный, эластомер, содержит двойные связи | Резина, изоляция, различные материалы, ракетное топливо | |
Натуральный каучук | Природный, линейный, эластомер, содержит двойные связи | Резина, изоляция, различные материалы, ракетное топливо | |
Хлоропреновый каучук | Синтетический, линейный, эластомер, содержит двойные связи | Резина, изоляция, различные материалы, ракетное топливо | |
Бутадиен-стирольный каучук Мономеры: бутадиен-1,3 и стирол | Синтетический, эластомер | Резина, изоляция, различные материалы, ракетное топливо | |
Полиакрилонитрил | Акрилонитрил | Синтетический, линейный | Волокна, пластмассы |
Поликонденсация
Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов, обычно это вода. |
Характерные признаки поликонденсации.
|
Важнейшие синтетические полимеры, получаемые реакцией поликонденсации, и области их применения:
Полимер и м ономер | Характеристики полимера | Применение полимера | |
Капрон Мономер: 6-аминокапроновая кислота (лактам) | Синтетический, линейный, термопластичный, очень эластичный | Полиамидные волокна (нитки, ткани, парашюты, втулки и т.д.) | |
Найлон Мономер: 1,6-диаминогексан и адипиновая кислота (1,6-гександиовая) | Синтетический, полиамидный, линейный, термопластичный | Изготовление втулок, вкладышей, ниток, одежды, гитарных струн (полиамидное волокно) | |
Лавсан (полиэтилентерефталат) Мономер: Этиленгликоль, терефталевая кислота | Синтетический линейный полимер, т ермопластичный, полиэфирный | Натяжные потолки, окна, пленка, трубы, полы, изолента и т.д | |
Фенолформальдегидная смола Мономеры: фенол и формальдегид | Синтетический, пространственный (сетчатый) полимер | Производство ДСП, лаков, клея (БФ-6 применяется в медицине), часто используется с наполнителями | |
Крахмал Мономер: α-глюкоза | Природный, полиэфирный, разветвленный | Пищевая, текстильная, бумажная промышленность, фармацевтика и др. | |
Целлюлоза Мономер: β-глюкоза | Природный, полиэфирный, линейный | Производство бумаги, искусственных волокон, пленок, пластмасс, лакокрасочных материалов, бездымного пороха, взрывчатки, твердого ракетного топлива, получение гидролизного спирта и др. | |
ДНК Мономер: Дезоксирибоза, ортофосфорная кислота, азотистые основания | Природный, полиэфирный, линейный | Функционирование живых организмов | |
РНК Мономер: Рибоза, ортофосфорная кислота, азотистые основания Источник |