Способ получения серого чугуна кратко

Серый чугун

Серый чугун представляет собой сплав железа и углерода, графит в котором имеет вид хлопьевидных, пластинчатых или волокнистых включений. Такое название данный сплав получил благодаря виду излома, который имеет характерный серый цвет. Своим цветом серый чугун обязан количеству свободного графита – именно он, а не форма графитных включений в сплаве, является цветообразующим.

Существуют разные виды серого чугуна, которые имеют буквенно-цифровое обозначение, где цифры являются показателем предела прочности в кг/мм 2 . Среди них существуют основные: СЧ 10, СЧ 15, СЧ 20, СЧ 25, СЧ 30, СЧ 35, и дополнительные марки серого чугуна: СЧ 18 и СЧ 21. Последние используются для изготовления отливок по требованию потребителя. В отдельную группу марок выделены серые высокопрочные чугуны, в составе которых присутствует графит, имеющий глобулярную форму в результате его модифицирование магнием, царием, а также другими элементами. Данный тип чугуна имеет буквенную маркировку ВЧ, после которой цифрами указывается прочно, а через дефис указывается относительное удлинение в процентах. Например, ВЧ 60 -2.

Получение серого чугуна осуществляется путем восстановительных процессов с использованием углеродного топлива (кокса). Основным и единственным материалом для данного процесса являются железные руды. В процессе получения серого чугуна, происходит не только восстановление окислов железа, но и наполнение сплава свободным углеродом.

Серый чугун. Свойства

В зависимости от процентного содержания свободного углерода в сплаве, серый чугун может обладать теми или иными механическими свойствами. Среди них можно выделить наиболее важные качества, которыми являются его литейность (или жидкотекучесть), а также малая усадка при застывании. Указанные свойства сплава позволяют изготавливать из него отливки сложной формы. Также стоит сказать, что выполненные из серого чугуна детали имеют достаточно высокую устойчивость к воздействию на них внешних концентраторов напряжения при циклических нагрузках, а также обладают высоким коэффициентом поглощения колебаний при вибрациях деталей. Серому чугуну присущи высокие прочностные свойства.

Толщина стенок отливки влияет на временное сопротивление (или предел прочности) серого чугуна. В связи с тем, что данный сплав в своем составе имеет пластинчатые формы графитных включений, то он является хрупким. Это связано с тем, что характерные пластинчатые графитные включения выполняют роль множественных надрезов в чугуне. Серый чугун имеет следующую прочность: 100 МПа для СЧ 10 и 350 МПа для СЧ 35. Не смотря на то, что данный сплав обладает достаточно низкой прочностью на изгиб и высокой хрупкостью, ему присущий достаточно высокий показатель прочности на сжатие.

Благодаря своей износостойкости, чугун является основным материалом для изготовления тех деталей, которые функционируют при большом трении. В силу своих свойств, обработка серого чугуна возможна далеко не всеми способами. Так, например, большое содержание углерода в составе сплава, которое является основным условием при получении чугуна, не позволяет производить с данным сплавом сварочные работы. Они практически невозможны. Однако, учитывая технический прогресс и современные методы, все же некоторые условия позволяют совершить с серым чугуном подобные манипуляции. К специальным условиям относятся: предварительный и качественный прогрев делателей, применение специальных электродов с высоким содержанием углерода. Но даже при всех правильно созданных условиях и сварке, структура металла шва имеет существенные отличия от первоначального материала. Для того, чтобы избежать напряжений в зоне шва, сваренные чугунные детали охлаждаются достаточно медленно.

Структура серого чугуна

Основными компонентами чугуна являются железо и углерод, который содержится в сплаве обязательно в количестве, большем, чем 2,4%. Зачастую содержание углерода колеблется в пределах от 2,9 до 3,7%. Не смотря на то, что углерод является основным компонентом, он является не единственным, и в составе серого чугуна обязательно присутствуют другие составляющие, в частности, кремний, без которого не возможно образование графита. Большую роль на формирование внутренней структуры сплава играют условиях охлаждения после затвердевания и само время остывания. В зависимости от этого чугун может обладать ферритной, ферритно-перлитной или сугубо перлитной металлической основой. Чем быстрее происходит охлаждение чугуна, тем большую долю в своем составе он имеет перлита, что, в свою очередь, отображается на его прочности – она возрастает, однако, вместе с этим существенно снижается его пластичность. Каждая определенная марка чугуна, имеющая оптимальные для конкретного случая сочетания свойств, применяется в совершенно конкретной области. Структурные компоненты серого чугуна обозначаются условно по ГОСТ 3443-87. Например, обозначение пластичного графита, содержащегося в сером чугуне по ГОСТ будет иметь маркировку ПГ. Графит в структуре серого чугуна может иметь различные формы:

  • пластинчатую прямолинейную, имеющую обозначение ПГ ф1;
  • пластинчатую завихренную, которая обозначается ПГ ф2;
  • игольчатую – ПГ ф3;
  • гнездообразную — ПГ ф4.
Читайте также:  Виды способов защиты корпоративных прав

Структура чугуна имеет очень важное значение для того, чтобы в дальнейшем можно было получить необходимые свойства отливки. В связи с этим, очень важное значение имеют все технологические режимы плавки и заливки при работе с серым чугуном.

Применение серого чугуна

Серый чугун благодаря своим уникальным свойствам в сочетании с достаточно низкой стоимостью является тем материалом, который нашел свое широкое применения, в первую очередь, для изготовления деталей, на которые воздействуют незначительные механические нагрузки. Таким образом, данный вид материала является очень популярным и востребованным в таких сферах человеческой деятельности, как машиностроение, строительство, сантехнические работы и многое другое. Также его применяют при изготовлении различных предметов повседневного обихода, кухонной посуды и т.д.

Источник

Серый чугун

Серый чугун — это сплав железа с углеродом, который при охлаждении металла образуется в виде хлопьевидных или пластинчатых включений. Содержание углерода в сплаве превышает 2,14%, что выше нормальной растворимости. Этим сплав и отличается от стали, в которой углерод полностью растворен и отсутствует в виде отдельных включений, структура которых определяет их как графит.

Основные характеристики

Серый чугун лежит в основе черной металлургии, поскольку получается в результате восстановления железных руд при помощи углеродного топлива (кокса). В результате, кроме химической реакции восстановления окислов железа, сплав дополнительно насыщается свободным углеродом.

Высокое содержание углерода в свободном состоянии определяет механические свойства серого чугуна. Одно из основных качеств, которые позволяют использовать серый чугун не только в качестве передельного металла, это его высокие литейные качества и малая усадка при застывании. Расплавленный металл имеет высокую текучесть, поэтому из него можно выполнять отливки сложной формы.

Плиты серого чугуна

Ограничение по использованию изделий из серого чугуна обусловлено тем, что он имеет низкую прочность на изгиб, высокую хрупкость. Вместе с тем прочность серого чугуна на сжатие очень высока.

Несмотря на высокую хрупкость, такая характеристика, как износостойкость чугуна, позволяет использовать его в изделиях, работающих в условиях трения. В данных условиях сильное влияние оказывают антифрикционные свойства сплава.

Наличие большого количества углерода снижает плотность серого чугуна по сравнению с большинством сортов стали и составляет от 6,8 до 7,3 т на м 3 .

Из-за наличия вкраплений углерода сварка серого чугуна практически невозможна. Существуют технологии сварки при наличии определенных условий. Это предварительный нагрев деталей, использование специальных высокоуглеродистых электродов, но все равно, структура металла шва сильно отличается от основного материала. Свариваемые детали должны медленно охлаждаться для устранения напряжений в зоне шва.

Химический состав и структура

В химический состав сплава, кроме железа и углерода, входит также некоторое содержание кремния. Свойства сплава зависят от условий охлаждения, поскольку время изменения температуры влияет на формирование внутренней структуры материала.

При медленном остывании образуются крупные кристаллы железа, и соединения металла с углеродом приобретают перлитную основу. Медленное остывание вызывает рост геометрических размеров не только кристаллов железа, но и включений углерода, поэтому, перлитный металл имеет высокую прочность, но повышенную хрупкость.

Микроструктура серого чугуна

В условиях быстрого охлаждения углерод не успевает сформировать крупные включения графита, поэтому сплав приобретает ферритную структуру.

Ферритный серый чугун имеет несколько меньшую хрупкость, чем перлитный.

Выбирая режим охлаждения литой заготовки, можно определенным образом влиять на итоговые свойства материала, в зависимости от предъявляемых требований.

Читайте также:  Все способы утепления стен дома

Применение

Серый чугун широко применяется при литье изделий, для которых важна высокая прочность на сжатие. Это свойство важно, главным образом, при изготовлении литых станин инструментального парка. Применение материала ограничивается повышенной хрупкостью изделий при наличии значительных изгибающих усилий.

Изделие из серого чугуна

Ранее широко использовались хорошие литейные свойства материала при изготовлении различных изделий бытового и промышленного назначения. Разнообразная кухонная и бытовая утварь – чугунки, сковороды, утюги, изготовленная литьем при минимальной последующей обработке имела низкую себестоимость и легкость в производстве.

В настоящее время при помощи литья изготавливают также высоконагруженные элементы машин, где они не подвергаются изгибающим нагрузкам. Это поршни и цилиндры двигателей внутреннего сгорания.

Детали высокой прочности, отлитые из серого чугуна, имеют минимальную стоимость и высокий срок службы. Без преувеличения можно сказать, что литые станины и корпуса станков являются практически вечными по сравнению с остальными элементами устройства.

Источник

Технология получения высококачественного серого чугуна с пластинчатым графитом

Требования к жидкому чугуну.

Отливки, используемые в совре­менном машиностроении, должны обладать стабильно высокими механическими свойствами.

Так, например, в автомобилестроении в основном использу­ются отливки серого чугуна, временное сопротивление при рас­тяжении которого σΒ = 200. 300 МПа и твердость НВ 190. 240. Для значительной части ответственных автомобильных отливок технические условия предусматривают преимущественно перлит­ную структуру с максимальным содержанием феррита до 5 %. Меха­нические условия определяют также характер и размеры включе­ний пластинчатого графита.

Получение высококачественного чугуна связано с применени­ем внепечной обработки расплава — модифицирования. Однако для эффективного модифицирования выплавленный чугун должен удовлетворять определенным требованиям.

Как известно, для получения чугуна с высокими прочностью и твердостью необходимо выплавить металл с пониженным со­держанием углерода и кремния при некотором повышении со­держания марганца. Для получения чугунов марок СЧ40 и СЧ45 необходимо, кроме того, снизить содержание серы и фосфора.

На первый взгляд пониженное содержание углерода и крем­ния упрощает задачи плавки, так как для этого требуется меньше дорогостоящего ферросилиция, существенно уменьшается время на науглероживание металла. В этой связи существует присущий только плавке серого чугуна парадокс — чем выше марка чугуна, тем дешевле шихта для его выплавки.

Однако на практике получение отливок серого чугуна высо­ких марок сопряжено с опасностью получения отбела. Это объяс­няется тем, что структура таких отливок должна быть по пре­имуществу перлитная, на грани отбела. Поэтому даже небольшие отклонения в минус по содержанию углерода и кремния, свя­занные, например, с неточностью дозирования шихты или на­рушениями принятого режима плавки и модифицирования, при­водят к получению половинчатого или белого чугуна. Этот вид брака неизбежно вскрывается в процессе механической обработ­ки и никогда, в отличие от других видов брака, не остается неза­меченным. Очевиден в данном случае и виновник брака — пла­вильное отделение.

Из этих рассуждений следует важнейшее требование к жидкому металлу при получении отливок высококачественного серого чу­гуна — стабильность химического состава.

Кроме того, пониженный углеродный эквивалент приводит к понижению жидкотекучести и требует повышенной температуры заливки.

Содержание вредных примесей — серы и фосфора, допусти­мое для чугунов вплоть до СЧ35, составляет соответственно 0,12 и 0,3 %. Оно обеспечивается при плавке на обычной шихте в печах с кислой футеровкой. Для получения СЧ40 и СЧ45, содержащих серы и фосфора не более 0,02 % каждого, необходимы специальные приемы плавки и внепечной обработки.

Поэтому для получения серого чугуна высокого качества необ­ходимо:

о использовать шихту стабильного состава и обеспечить точ­ность дозирования ее компонентов;

• обеспечить оптимальные уровни перегрева и продолжитель­ности выдержки в условиях применения электроплавильных агре­гатов;

• обеспечить надежность контроля процесса плавки на всех его этапах и возможность оперативного воздействия на него;

• использовать внепечную обработку.

Технология модифицирования.

Модифицирование являет­ся наиболее простым, эффективным и, поэтому, самым распрос­траненным способом повышения прочностных свойств чугуна.

В качестве модификатора при производстве отливок серого чу­гуна чаще всего используют ферросилиций ФС75, обладающий одновременно раскисляющей и графитизирующей способностя­ми. За счет его свойств можно получить мелкозернистую структу­ру отливки, снизить отбел и повысить механические свойства металла. Количество модификатора зависит от различных произ­водственных условий и увеличивается от 0,2. 0,4 % для СЧ25 до 1,5. 2% для СЧ45.

Читайте также:  Способы приготовления растворов щелочей

Обычно модификатор вводят в ковш под струю металла, на желоб, в литниковую чашу или в форму. Размер зерен модифика­тора составляет 2. 5 мм при обработке жидкого металла массой до 2 τ и 5. 15 мм при обработке больших количеств.

В зависимости от способа ввода модификатора может усваи­ваться 70. 90% (кремния).

Перед употреблением модификатор прокаливают при 300. 400 °С в течение 1. 2 ч. Пылевидные фракции размером менее 0,5 мм отсеивают.

Температура металла при выпуске из печи составляет обычно 1420. 1460°С, она должна быть тем большей, чем выше марка чугуна. После ввода модификатора металл целесообразно переме­шать для равномерного распределения его в объеме ковша. Во из­бежание потери эффекта модифицирования выдержка чугуна после добавки модификатора не должна превышать его живучести. Эта величина для ферросилиция ФС75 в зависимости от емкости ков­ша составляет:

Масса металла в ковше, τ. До 0,5 0,5. 2 2. 10

Допустимая выдержка, мин. 3. 5 5. 8 8. 10

В настоящее время для получения высококачественного серого чугуна применяются разнообразные модификаторы и способы их ввода. Эффективность их применения в большой степени зависит от разнообразных условий производства, поэтому имеющиеся дан­ные позволяют лишь отметить наиболее характерные особенности различных модификаторов, не давая оснований для сравнитель­ной оценки эффективности их использования.

Силикокальций может использоваться самостоятельно в количестве 0,3 . 0,6 % от массы жидкого чугуна, а также в смеси с ферросилицием ФС75 в соотношении 1:1 или с ФС75 и графитом в зернах.

Алюминий в смеси с ферросилицием или с графитом эф­фективно предотвращает отбел чугуна.

Графит черный — наиболее простой и дешевый модифика­тор, предотвращающий отбел на тонкостенных отливках.

Силикобарий является комплексным модификатором с по­вышенной живучестью.

Важно отметить, что для достижения максимального эффекта модифицирования исходный чугун должен иметь пониженный углеродный эквивалент и при затвердевании без модифицирова­ния образовывать структуру белого или половинчатого чугуна. Модификатор вводится в таком количестве, что углеродный эк­вивалент модифицированного чугуна оказывается равным его ве­личине в немодифицированном чугуне, имеющем структуру на грани отбела для данной толщины стенки отливки.

Жидкое модифицирование.

При производстве крупных толстостенных отливок температура заливки обычно не превы­шает 1250 °С. Введение твердых модификаторов в такой «холод­ный» чугун не дает положительных результатов. В этих случаях ока­зывается эффективным жидкое модифицирование, которое осу­ществляют путем смешивания жидкого чугуна с расплавленным модификатором — расплавленной сталью или жидким чугуном с высоким углеродным эквивалентом. Такая операция не является Простым смешиванием и усреднением химического состава и тем­пературы расплава, при этом происходят процессы, по результа­там аналогичные модифицированию, — структура чугуна измель­чается.

Существенное влияние на результат жидкого модифицирова­ния оказывает продолжительность выдержки полученного метал­ла до его заливки в форму. Модифицирующее воздействие жидко­го модификатора так же, как и при введении твердого модифика­тора, спустя 20 мин исчезает.

Недостатком метода жидкого модифицирования является не­обходимость использования двух одновременно работающих пла­вильных печей.

Кроме модифицирования разработаны многочисленные мето­ды внепечной обработки, из которых для получения высококаче­ственного серого чугуна в настоящее время наибольшее практи­ческое значение имеет обρабоτка чугуна жидкими син­тетическими шлаками с целью снижения содержания серы, фосфора, неметаллических и газовых включений.

Синтетический шлак на основе извести (60. 70 %) и плавико­вого шпата (5. 10 %) приготовляют в специальной шлаковой печи, затем сливают в ковш и заливают в него жидкий чугун. При этом происходит эмульгирование мельчайших капель шлака в чугуне и существенно возрастает величина межфазной поверхности металл-шлак. В результате такой обработки содержание серы в чугуне сни­жается на 90 % от первоначального. Этот метод целесообразно ис­пользовать в тех случаях поставок шихты с повышенным содержа­нием серы, которые не носят систематического характера.

Источник:
Трухов А.П., Маляров А.И. Литейные сплавы и плавка М.: Академия, 2004.

Источник

Оцените статью
Разные способы