Способ получения пвх что это

Физические и химические свойства поливинилхлорида

Поливинилхлорид (ПВС) – синтетический полимер, мономерное звено – молекула хлорида этилена. Формула поливинилхлорида: (-CH2-CCl-)n, где n – это степень полимеризации.

Физические и химические свойства поливинилхлорида

Физические свойства ПВХ:

  • Молекулярная масса: от 9 до 170 тысяч г/моль.
  • Плотность: 1,35-1,43 г/см3.
  • Температура плавления: 150-2200С.
  • При повышении температуры свыше 110-1200С разлагается с выделением хлористого водорода.

Химические свойства ПВХ:

  • Растворим в циклогексане, дихлорэтане.
  • Набухает в ацетоне, бензоле.
  • Не растворим в воде, спиртах.
  • Не взаимодействует с кислотами, основаниями.

Получение поливинилхлорида

Как отмечалось ранее, мономерным звеном ПВХ является молекула хлорида этилена. Существует несколько основных методов синтеза ПВХ. Но 80% основного продукта получают способом «полимеризация в суспензии». Протекание этой реакции возможно благодаря тому, что винилхлорид не растворятся в воде.

Как все происходит? Сырье – винилхлорид, под давлением через трубочку диспергируют в реактор, заполненным водой. Получаются микрокапельки плавающие в воде. Затем смесь подогревают до необходимой температуры и вводят суспензию органического пероксида, который является инициатором реакции.

Реакция протекает с выделением тепла и соляной кислоты. Чтобы избежать протекания обратной реакции, которая все «разрушит», в систему вводят специальный стабилизатор. Он покрывает образовавшиеся частички защитной пленкой. Далее отделают частички от жидкости при помощи сита или центрифуги.

Разновидности поливинилхлорида

Выше расписан наиболее популярный способ получения поливинилхлорида, но существуют еще другие, например эмульсированный. В зависимости от метода получения поливинилхлорида, определяются и его свойства.

Так, суспензионный ПВХ обладает сравнительно узким молекулярно-массовым распределением, малой степенью разветвлённости молекул, отличается большей степенью чистоты. Для данного вида характерны высокие диэлектрические свойства, низкое водопоглощение, повышенная свето – и термостойкость.

Эмульсированный же образец имеет широкое молекулярно-массовое распределение, большое число примесей, характеризуется более худшими диэлектрическими показателями, низкой свето- и термостабильностью. Но при этом для него характерно более высокое водопоглощение.

Также существуют разновидности поливинилхлорида по пластичности:

  • Жесткий, непластифицированный материал.
  • Мягкий поливинилхлорид, пластифицированный.

Применение поливинилхлорида

ПВХ в медицине

Уже более полувека поливинилхлорид успешно применятся в медицине, причем уровень потребления данного материала с каждым годом только увеличивается.

Почему ПВХ стал так популярен в медицинской области? Потому что возникла необходимость заменить хрупкие стеклянные предметы, которые необходимо стерилизовать, на что-то более прочное и удобное в использовании. После долгих поисков возникла идея использовать ПВХ материалы для изготовлений «подмены». Поливинилхлорид для этих целей подошел очень хорошо, благодаря своим свойствам, и главным образом, химической стабильности. Товары, полученные из ПВХ, могут легко стерилизоваться, безопасны при использовании внутри человеческого тела, отвечают нормам по стойкости – не трескаются, не лопаются, не протекают. Здравоохранительная область, приняла материалы, полученные из поливинилхлорида, только после прохождения огромного количества тестов и полного убеждения в их безопасности для человека.

  • Контейнеры для внутренних органов и крови.
  • Катетеры и трубки для кормления.
  • Хирургические маски и перчатки.
  • Упаковки для таблеток.
  • Приборы для измерения давления.
Читайте также:  Способ регуляция процесс дыхании

ПВХ в автомобилестроении

Еще одна не менее популярная область использования поливинилхлорида – это автомобилестроение. В данной сфере ПВХ применяется для производства покрытий, уплотняющих и изоляционных материалов, отделки салона.

Применение поливинилхлоридных материалов сделало современный транспорт не только более красивым, но и легким, и безопасным. ПВХ и другие применяемые полимеры, заменившие ранее используемые металлические детали, сделали транспорт более лёгким, снизив затраты на топливо. Поливинилхлорид используется для производства подушек безопасности, защитных накладок – всего того, что спасает пассажиров от травм.

ПВХ в строительстве

Поливинилхлорид используется и в строительстве. Его качества, такие как: механическая прочность, износостойкость, устойчивость к коррозии, погодным перепадам, химическому и ультрафиолетовому воздействию делают его просто незаменимым. Более того ПВХ огнеупорный материал – это свойство повышает пожарную безопасность объектов, построенных с использованием поливинилхлорида.

ПВХ не проводит электричество.

Какой самый распространённый пример использование ПВХ в строительстве? Конечно же, пластиковые окна. Из ПВХ изготавливают оконные профили, материалы для декоративной отделки и т.п.

ПВХ в других областях

Крепкий, износостойки поливинилхлорид применяется еще в одной области – в производстве детских игрушек. Куклы, мячи, любимые детками утята для ванн, надувные круги и много другое.

Если мы посмотрим вокруг себя, то обнаружим, что банковские карты выполнены из поливинилхлорида, мебель для дачи – из жёсткого ПВХ, напольные покрытия – из гибкого ПВХ.

Упаковка – это отдельная сфера использования поливинилхлорида. Упаковка для зубной пасты, шампуня, крема, корпус сотового телефона и т.п.

На долю упаковки идет следующее распределение:

  • Пленка жёсткая – 51%.
  • Бутылки – 35%.
  • Пленка мягкая – 11%.
  • Крышечки для бутылочек – 3%.

Недостатки поливинилхлорида

Можно выделить лишь один небольшой недостаток, присущий поливинилхлориду – при длительно нахождении на солнце может произойти фотодеструкция. В следствие чего материал станет хрупким и потеряет свою эластичность. Но как же из него делают оконные профили, спросите вы? Данный недостаток устраняется введением светопоглащающих красителей, которые теряют цвет сами, не давая лучам взаимодействовать с ПВХ.

Безопасность использования поливинилхлорида

Поливинилхлорид – слаботоксичное вещество. При разложении могут образовываться продукты, вызывающие раздражение дыхательных путей. Осевшая пыли ПВХ пожароопасна.

Каждый наверно слышал байки, о том, что ПВХ окна вредны, они убивают, отправляют людей. Но давайте вспомним о том моменте, что из поливинилхлоридных материалов производят кучу всего для медицины и что здравоохранение провело множество тестов прежде, чем убедилось в безопасности применяемых вещей. Так почему тогда, окна, выполненные из такого же материала, что и катетер, установленные в вене больного окажутся опасными? Тут все просто, окна могут быть опасными, они могут выделять вредные вещества, если выполнены из некачественных материалов, дешёвых, токсичных. Поэтому, материалы для отделки дома нужно закупать в сертифицированных организациях, а не где «дешевле», тогда и боятся не чего. Медицинский же персонал не покупает в дешёвых интернет-магазинах перчатки и маски, они обращаются к надежным поставщикам, производителям.

Источник

Поливинилхлорид (ПВХ)

Поливинилхлорид (ПВХ) [-СН2-СНСl-]n – это высокомолекулярный хлорсодержащий полимер, элементарные звенья в макромолекуле которого в основном соединены по типу «голова к хвосту».

Поливинилхлорид является термопластичным полимером с температурой стеклования 70—80 °С и температурой вязкого течения 150—200 °С в зависимости от молекулярной массы. Степень полимеризации ПВХ промышленных марок колеблется от 400 до 1500.

Читайте также:  Практический способ решения задач пример

Свойства и назначение поливинилхлорида в значительной мере определяются способом его получения. Свойства ПВХ также можно изменять путем химической модификации. Доступность исходного сырья (винилхлорида), относительно несложные методы получения, ценные технические свойства обусловили быстрый рост и большие масштабы его производства.

Пластические массы на основе поливинилхлорида нашли широкое применение в электротехнической и химической промышленности, в строительстве, а также в других областях техники и в быту.

Краткий исторический очерк

В 1835 г. Реньо обнаружил способность газообразного винилхлорида под действием света превращаться в порошок. В 1872 г. полимеризация винилхлорида была исследована Бауманом. А через 40 лет Остромысленский и Клатте предложили использовать фотополимеризацию как промышленный метод получения поливинилхлорида. Позднее были разработаны способы полимеризации винилхлорида под влиянием инициаторов, распадающихся при нагревании на свободные радикалы. Промышленный синтез поливинилхлорида в водной эмульсии был впервые осуществлен в 1930 г. Следующим важным шагом явилась разработка и осуществление в промышленности суспензионной полимеризации винилхлорида. Сравнительно недавно был освоен промышленный метод полимеризации винилхлорида в массе.

Полимеризация винилхлорида

Поливинилхлорид (ПВХ) получают радикальной полимеризацией винилхлорида:

В промышленности наибольшее распространение получил суспензионный метод. Инициирование процесса осуществляется свободными радикалами, образующимися при гомолитическом распаде пероксидов или азосоединений. Первичный радикал присоединяется главным образом к метиленовой группе винилхлорида:

В связи со склонностью поливинилхлорида к дегидрохлорированию при температурах выше 75 °С возможна передача цепи на полимер за счет отрыва аллильного атома хлора от атома углерода, который находится рядом с двойной связью, образовавшейся вследствие частичного дегидрохлорирования полимера:

В результате этой реакции возникают малоактивные аллильные радикалы, вызывающие замедление полимеризации. Для предотвращения дегидрохлорирования и получения ПВХ с теоретическим содержанием хлора желательно вести процесс полимеризации при температурах не выше 70—75 °С.

Радикалы винилхлорида вследствие их высокой активности легко вступают во взаимодействие с различными примесями, содержащимися в мономере даже в незначительных количествах.

Некоторые из примесей, например ацетилен, реагируют как агенты передачи цепи и могут вызывать образование малоактивных радикалов, замедляя полимеризацию. В присутствии других примесей происходит обрыв цепи.

Реакция передачи цепи часто используется для регулирования молекулярной массы полимера. При этом в полимеризационную среду вводят вещества, способные участвовать в передаче цепи, — регуляторы. Регуляторы выбирают так, чтобы образующиеся в результате передачи цепи радикалы были достаточно активными, в противномслучае используемые регуляторы замедляют или даже ингибируют полимеризацию.

Во всех случаях получения поливинилхлорида кислород оказывает отрицательное влияние на ход полимеризации и свойства полимера. Наличие кислорода в системе обусловливает индукционный период процесса полимеризации, уменьшение скорости полимеризации, понижение средней молекулярной массы ПВХ, появление разветвленности, уменьшение термической стабильности ПВХ, ухудшение его совместимости с пластификаторами.

Поэтому содержание кислорода выше 0,0005—0,001% (по отношению к винилхлориду) нежелательно.

При полимеризации винилхлорида выделяется большое количество тепла 1466 кДж/кг, что существенно влияет на технологию получения полимера.

При полимеризации винилхлорида в массе полимер выпадает в осадок в виде твердой фазы вследствие нерастворимости ПВХ в мономере. При этом сначала происходит увеличение скорости реакции от начала процесса до высоких степеней конверсии мономера, а затем ее медленное уменьшение.

Читайте также:  Какими способами можно достичь резонанса напряжений

Возрастание скорости полимеризации обусловлено образованием твердой фазы. В результате передачи цепи на полимер на выпавших из жидкой фазы макромолекулах образуются активные центры, способные продолжать полимеризацию. Вследствие малой подвижности закрепленных на поверхности полимера растущих цепей скорость обрыва цепи уменьшается, тогда как скорость роста остается высокой из-за большой подвижности молекул мономера. Поэтому с появлением твердой фазы скорость полимеризации возрастает.

На возрастание скорости полимеризации винилхлорида влияет также способность полимера набухать в мономере. Полимеризация протекает в набухших частицах полимера, в которых скорость передвижения макрорадикалов, вероятность их столкновения и бимолекулярного обрыва цепи мала. Подвижность молекул мономера в набухших частицах и скорость роста полимерных цепей остается большой.

Описанное выше явление автокатализа при полимеризации винилхлорида в гетерогенных условиях часто называют гель-эффектом. Однако это явление при полимеризации винилхлорида не аналогично типичному гель-эффекту, наблюдаемому в тех случаях, когда образующийся полимер растворим в собственном мономере.

Свойства поливинилхлорида

Поливинилхлорид представляет собой белый порошок плотностью 1350—1460 кг/м 3 . Молекулярная масса продукта промышленных марок 30000—150000. Степень кристалличности достигает 10%.

Поливинилхлорид характеризуется значительной полидисперсностью, возрастающей с увеличением степени превращения.

Среднечисловую молекулярную массу ‾Мn (близкую по значению к среднемассовой ¯Mw) можно рассчитать по значению характеристической вязкости [η] :

На практике молекулярную массу поливинилхлорида характеризуют константой Фикентчера ( Кф ): Kф =1000k

Коэффициент k определяется по уравнению :

где ηотн — относительная вязкость раствора поливинилхлорида в циклогексаноне (обычно 0,5 или 1 г полимера на 100 см 3 растворителя).

Ниже приводится константа Фикентчера Кф, характеризующая среднюю молекулярную массу поливинилхлорида, полученного различными способами:

Способ получения ПВХ Константа Фикентчера Кф
Суспензионный 47-76
В массе 56-72
Эмульсионный 54 -77

Приведенная вязкость (ηпр), константа Фикентчера (Кф) и среднечисловая молекулярная масса (¯Мn) поливинилхлорида связаны следующим образом:

ηпр 1,80 1,98 2,20 2,44 2,70
Кф 55 60 65 70 75
Мn 50 000 65 000 80 000 90000 100 000

Благодаря высокому содержанию хлора (около 56%) поливинилхлорид не воспламеняется и практически не горит. При 130—150 °С начинается медленное, а при 170 °С более быстрое разложение поливинилхлорида, сопровождающееся выделением хлористого водорода.

Поливинилхлорид нерастворим в мономере (винилхлориде), в воде, спирте, бензине и многих других растворителях. При нагревании он растворяется в тетрагидрофуране, хлорированных углеводородах, ацетоне и др.

Поливинилхлорид обладает хорошими электроизоляционными и теплоизоляционными свойствами, а также высокой стойкостью к действию сильных и слабых кислот и щелочей, смазочных масел и др.

Под действием энергетических и механических воздействий в поливинилхлориде протекают реакции дегидрохлорирования, окисления, деструкции, структурирования, ароматизации и графитизации. Основная реакция, ответственная за потерю полимером эксплуатационных свойств, — выделение НСl.

Для предотвращения разложения в поливинилхлорид вводят стабилизаторы. В качестве антиоксидантов применяют производные фенолов и производные карбамида.

При термической пластификации при 160 °С поливинилхлорид превращается в застывший блок, жесткий и прочный при комнатной температуре.

Поливинилхлорид хорошо совмещается с пластификаторами.

Поливинилхлорид широко используется в технике как антикоррозионный материал. Благодаря хорошим электроизоляционным свойствам он применяется для кабельной изоляции и для других целей.

Источник

Оцените статью
Разные способы