Способ получения поляризованного света двойное лучепреломление

Двойное лучепреломление света

Виды световых лучей

Различают обыкновенный и необыкновенный лучи света.
Обыкновенный луч имеет вектор \(E_0 ⃗\) который направлен нормально к главной плоскости, на его скорость не влияет направление вектора, и она равняется скорости луча с направлением, коллинеарным оптической оси. Все величины, которые имеют отношение к обыкновенному лучу обозначаются индексом 0.

Необыкновенный луч имеет вектор \(E_0 ⃗\) , находящийся на главной плоскости, на скорость его распространения влияет направление, при чем если луч меняет направление, то меняется главная ось в разрезе эллипсоида. Все величины, которые имеют отношение к обыкновенному лучу обозначаются индексом е.
Отношение скоростей отрицательных кристаллов: \(v_0 v_е\) .

Понятие о двойном лучепреломлении

Двойное лучепреломление представляет явление раздвоения луча, проходящего сквозь кристалл. Это происходит благодаря тому, что лучи внутри кристалла могут распространяться с разной скоростью, что приводит к возникновению в процессе преломления нескольких лучей.
Этот эффект открыл в 1669 году ученый Э. Бартолинус, а исследовал и объяснил Х. Гюйгенс.

Частые примеры двойного преломления лучей

При перпендикулярности оптической оси относительно поверхности кристалла луч будет падать вдоль оптической оси, в этом случае характер его распространение будет таким же, как в изотропной среде, то есть двойного лучепреломления не будет. Если луч будет направляться под углом к поверхности кристалла, то двойное лучепреломление будет иметь место. При этом оно будет разным для разных типов кристаллов. Для отрицательного кристалла картина будет следующей: обыкновенный луч будет преломляться больше, чем необыкновенный. В случае с положительным кристаллом картина будет противоположная: необыкновенный луч будет преломляться сильнее, чем обыкновенный.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Если рассмотреть ситуацию, когда оптическая ось расположена параллельно поверхности кристалла, и луч направляется перпендикулярно поверхности кристалла, то в кристалле появятся два луча – обыкновенный и необыкновенный, но в пространстве они не будут разделяться. При выходе из кристалла они будут иметь разницу в фазах и создавать эллиптически поляризованную волну из-за суперпозиции. При подобном попадании на поверхность кристалла луча естественного света, выходящие из кристалла волны будут эллиптически поляризованными з разнообразными ориентированиями эллипсов.

Если на такой кристалл свет будет направлен под углом, то на двойное лучепреломление будет влиять угол между главной плоскостью и плоскостью направления луча.

Если допустить, что плоскость направления луча света расположена перпендикулярно оптической оси, и в ней расположены оба луча, то на преломление обыкновенного и необыкновенного лучей не будут влиять направления.

Если же плоскость распространения лучей расположена к оптической оси под углом отличным от 900, то ситуация с двойным лучепреломлением будет намного сложнее. Обыкновенный луч в данной ситуации будет расположен в плоскости падения, а необыкновенный окажется вне ее. Чтобы увидеть детальную картину, необходимо построить пространственную модель на базе построений Гюйгенса.

Закон Малюса

Закон Малюса позволяет определить интенсивность колебаний обыкновенного \(I_0\) и необыкновенного лучей \(I_e\) , при перпендикулярном направлении луча на пластину, вырезанную из кристалла параллельно оптической оси.

Читайте также:  Способы хода бега лошади

Закон Малюса записывается так:
\(I_e=I_0*cos^2 α,\)
где \(α\) – угол между оптической осью и линией колебания вектора.
Вектор волны, которая падает на поверхность, раскладывается на параллельные и перпендикулярные относительно оптической оси составляющие. Эти составляющие являются векторами обыкновенной и необыкновенной световых волн.

Поляризация в процессе двойного лучепреломления

Плоско поляризованные обыкновенный и необыкновенный лучи располагаются в плоскостях, перпендикулярных между собой. То есть эффект двойного лучепреломления применяют при создании поляризации света. С этой целью лучи света разделяют в пространстве, а один из них подвергают уничтожению посредством поглощения.

Если выходящий из кристалла один луч плоско поляризованный, а второй очень слабый, то этот кристалл является поляроидом. Примером хорошего поляроида есть турмалин. С толщиной всего в 1 мм, турмалиновая пластина практически полностью уничтожает обыкновенный луч. Электрический вектор необыкновенного луча в это время производит колебания вдоль оптической оси.

Не нашли что искали?

Просто напиши и мы поможем

Поляризатором является такой поляроид, который применяют при создании поляризованного света. Если его применяют для анализирования поляризованного света, то он именуется анализатором.
Рассмотрим пример решения задачи из области поляризованного света.

Ситуация с прохождением светового луча сквозь двоякопреломляющую призму. При этом преломление обыкновенного луча равняется \(n_0\) =1.658, необыкновенного \(n_е\) =1.486. Угол призмы равняется \(α\) =15. Найти угол необыкновенного луча, выходящего из призмы.

Решение : Кристаллы, поляризующие свет, в совокупности имеют название поляризационная или двоякопреломляющая призма. Поляризационной она является тогда, когда при выходе из нее остается один луч, а двоякопреломляющей – если два луча.

Если обыкновенный луч направляется через границу сред с перпендикулярными друг к другу оптическими осями, то во второй среде он становится необыкновенным. Та же картина наблюдается при прохождении необыкновенного луча.

Обозначим максимальный угол преломления необыкновенного луча \(θpre\) , угол преломления луча при выходе из кристалла \(θpre\) . Тогда закон преломления запишется в таком виде:

где углом падения необыкновенного луча на границу выхода из вещества является \(α-θpre\) .

Подставив данные получим:
.

Результат решения : .

Не нашли нужную информацию?

Закажите подходящий материал на нашем сервисе. Разместите задание – система его автоматически разошлет в течение 59 секунд. Выберите подходящего эксперта, и он избавит вас от хлопот с учёбой.

Гарантия низких цен

Все работы выполняются без посредников, поэтому цены вас приятно удивят.

Доработки и консультации включены в стоимость

В рамках задания они бесплатны и выполняются в оговоренные сроки.

Вернем деньги за невыполненное задание

Если эксперт не справился – гарантируем 100% возврат средств.

Тех.поддержка 7 дней в неделю

Наши менеджеры работают в выходные и праздники, чтобы оперативно отвечать на ваши вопросы.

Тысячи проверенных экспертов

Мы отбираем только надёжных исполнителей – профессионалов в своей области. Все они имеют высшее образование с оценками в дипломе «хорошо» и «отлично».

Гарантия возврата денег

Эксперт получил деньги, а работу не выполнил?
Только не у нас!

Деньги хранятся на вашем балансе во время работы над заданием и гарантийного срока

Гарантия возврата денег

В случае, если что-то пойдет не так, мы гарантируем возврат полной уплаченой суммы

Источник

Способ получения поляризованного света двойное лучепреломление

§1 Естественный и поляризованный свет

Испускание кванта света происходит в результате перехода электрона из возбужденного состояния в основное. Электромагнитная волна, испускаемая в результате этого перехода, является поперечной, то есть вектора и взаимно перпендикулярны и перпендикулярны направлению распространения. Колебания вектора происходят в одной плоскости. Свет, в котором вектор колеблется только в одном направлении, называется плоско поляризованным светом (или электромагнитной волной). Поляризованным называется свет, в котором направления колебания вектора упорядочены каким-либо образом.

Читайте также:  Введите цитаты разными способами

Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы излучают световые волна независимо друг от друга, поэтому световая волна, излучаемая телом в целом, харак­теризуется всевозможными равновероятными колебаниями светового вектора . Свет со всевозможными равновероятными ориентациями вектора называется естественным. Свет, в котором имеется преимущественное направление колебаний вектора и незначительная амплитуда колебаний вектора в других направлениях, называется частично поляризованным. В плоско поляризованном свете плоскость, в которой колеблется вектор , называется плоскостью поляризации, плоскость, в которой колеблется вектор , называется плоскостью колебаний.

Вектор называют световым вектором потому, что при действии света на вещество основное значение имеет электрическая составляющая поля волны, действующая на электроны в атомах вещества.

Различает также эллиптически поляризованный свет: при распростра­нении электрически поляризованного света вектор описывает эллипс, и циркулярно поляризованный свет (частный случай эллиптически поляризованного света) — вектор описывает окружность (сравните со сложением взаимно перпендикулярных колебаний: возможны: прямая линия, эллипс и окружность).

Степенью поляризации называется величина

где Imax и Imin – максимальная и минимальная компоненты интенсивности света, соответствующие двум взаимно перпендикулярным компонентам вектора (то есть Ех и Еу – составляющие). Для плоско поляризованного света Еу = Е, Ех = 0, следовательно, Р = 1. Для естественного света Еу = Ех = Е и Р = 0. Для частично поляризованного света Еу = Е, Ех = (0. 1)Еу, следовательно, 0

Если вектор в эллиптически поляризованном свете вращается при распространении света по часовой стрелке, то поляризация называется правой, против — левой. В эллиптически поляризованном свете колебания полностью упорядочены. К эллиптически поляризованному свету понятие степени поляризации не применимо, так что Р=1 всегда.

§2 Анализ поляризованного света при отражении и преломлении.

Закон Брюстера. Закон Малюса

Наиболее просто поляризационный свет можно получить из естественного света при отражении световой волны от границы раздела двух диэлектриков.

Если естественный свет падает на границу раздела двух диэлек­триков (например, воздух-стекло), то часть его отражается, а часть преломляется и распространяется во второй среде.

При угле падения, равном углу Брюстера іБр: 1. отраженный от границы раздела двух диэлектриков луч будет полностью поляризован в плоскости, перпендикулярной плоскости падения; 2. степень поляризации преломленного луча достигает максимального значения меньшего единицы; 3. преломленный луч будет поляризован частично в плоскости падения; 4. угол между отраженным и преломленным лучами будет равен 90°; 4. тангенс угла Брюстера равен относительному показателю преломления

n 12 — показатель преломления второй среды относительно первой. Угол падения (отражения) — угол между падающим (отраженным) лучом и нормалью к поверхности. Плоскость падения — плоскость, проходящая через падающий луч и нормаль к поверхности.

Степень поляризации преломленного света может быть значительно повышена многократным преломлением при условии падения света на границу раздела под углом Брюстера. Если для стекла ( n = 1,53) степень поляризации преломленного луча составляет ≈15 %, то после преломления на 8-10 наложенных друг на друга стеклянных пластинках, вышедший свет будет практически полностью поляризован — стопа Столетова.

Читайте также:  Глицин форте эвалар способ применения

Поляризованный свет можно получить из естественного с помощью поляризаторов — анизотропных кристаллов, пропускающих свет только в одном направлении (исландский шпат, кварц, турмалин).

Поляризатор, анализирующий в какой плоскости поляризован свет, называется анализатором.

Если на анализатор падает плоско поляризованный свет амплитудой Е0 и интенсивности I 0 ( ), плоскость поляризации которого составляет угол φ с плоскостью анализатора, то падающее электромагнитное колебание можно разложить на два колебания; с амплитудами и , параллельное и перпендикулярное плоскости анализатора.

Сквозь анализатор пройдет составляющая параллельная плоскости анализатора, то есть составляющая , а перпендикулярная составлявшая будет задержана анализатором. Тогда интенсивность прошедшего через анализатор света будет равна ( ):

закон Малюса

Закон Малюса : Интенсивность света, прошедшего через поляризатор, прямо пропорциональна произведению интенсивности падающего плоско поляризованного света I 0 и квадрату косинуса угла между плоскостью падающего света и плоскостью поляризатора.

Если на поляризатор падает естественный свет, то интенсивность вышедшего из поляризатора света I 0 равна половине I ест , и тогда из анализатора выйдет

§ 3 Двойное лучепреломление

Все кристаллы, кроме кристаллов кубической система — изотропных кристаллов, являются анизотропными, то есть свойства кристаллов зависят от направления. Явление двойного лучепреломления впервые было обнаружено Барталином в 1667 г. на кристалле исландского шпата (разновидность СаСО3). Явление двойного лучепреломления заклю­чается в следующем: луч света, падающий на анизотропный кристалл, разделяется в нем на два луча: обыкновенный и необыкновенный, распространяющиеся с разными скоростями в различных направлениях.

Анизотропные кристаллы подразделяются на одноосные и двуосные.

У одноосных кристаллов имеются одно направление, называемое оптической осью, при распространении вдоль которого не происходит разделения на обыкновенный и необыкновенный лучи. Любая прямая параллельная направлению оптической оси будет также являться оптической осью. Любая плоскость, проходящая через оптическую ось и падающий луч, называется главным сечением или главной плоскостью кристаллам.

Отличия между обыкновенными и необыкновенными лучами:

  1. обыкновенный луч подчиняется законам преломления необыкновенный — нет;
  2. обыкновенный луч поляризован перпендикулярно главной плоскости, плоскость поляризации необыкновенного луча перпендикулярна плоскости поляризованного обыкновенного луча;
  3. кроме оптической оси обыкновенные и необыкновенные лучи распространяются в разных направлениях. Показатель преломления n0 обыкновенного луча постоянен во всех направлениях, следовательно, фазовая скорость обыкновенного луча постоянна во всех направлениях. Показатель преломления nе необыкновенного луча ( Uф.е. ) зависит от направления.

Различие скоростей U о и U е для всех направлений, кроме направ­ления оптической оси, обуславливает явление двойного лучепреломления в одноосных кристаллах. У двуосных кристаллов имеется два направления, вдоль которых не происходит двойного лучепреломления.

Понятие обыкновенного и необыкновенного лучей имеет место пока эти лучи распространяются в кристалле, при выходе из кристалла эти понятия теряют смысл, то есть лучи отличаются только плоскостями поляризаций.


Природа двулучепреломления связана с тем, что обыкновенные и необыкновенные лучи имеют разные скорости, а так как , то для обыкновенного и необыкновенного лучей будут разные показатели преломления n 0 и n е , а так как то можно сказать, что перво­причиной двойного лучепреломления является анизотропия диэлектрич­еской проницаемости кристалла. Кристаллы, у которых V е V 0 ( n е > n 0 ) называются положительными, а у которых V е > V 0 ( n е n 0 )называются отрицательными.

Источник

Оцените статью
Разные способы