- Окись этилена
- Строение и параметры молекулы
- Физические свойства
- Химические свойства
- Присоединение воды и спиртов
- Присоединение карбоновых кислот и их производных
- Присоединение аммиака и аминов
- Мировое производство окиси этилена
- Производство окиси этилена в России
- Применение
- Промышленное производство на основе окиси этилена
- Основные направления промышленного использования
- Производство этиленгликоля
- Производство эфиров гликолей
- Производство этаноламинов
- Производство этоксилатов
- Производство акрилонитрила
- Прочие направления использования
- Идентификация окиси этилена
- Огне- и пожароопасность
Окись этилена
Окись этилена — органическое химическое гетероциклическое вещество, химическая формула C2H4O. При нормальных условиях — бесцветный газ с характерным сладковатым запахом. Производное этилена и представляет собой простейший эпоксид — трёхчленный гетероцикл, в кольцевой молекуле которого содержатся один атом кислорода и два атома углерода.
Окись этилена | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Общие | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Систематическое наименование | оксиран | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Традиционные названия | этиленоксид, 1,2-эпоксиэтан | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Хим. формула | C2H4O | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Физические свойства | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Состояние | газ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Молярная масса | 44,0526 г/моль | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Плотность | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Энергия ионизации | 10,56 ± 0,01 эВ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Термические свойства | Температура | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
• плавления | −111,3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
• кипения | 10,7 °C | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
• вспышки | Учёный был первым, кто исследовал свойства этого вещества, измерив температуру его кипения, а также обнаружил его способность вступать в реакцию c солями металлов и кислотами. Вюрц ошибочно предположил, что окись этилена обладает свойствами органического основания. Это заблуждение продержалось до 1896 года, пока учёные Георг Бредиг и Усов (англ. Usoff ) не обнаружили, что этиленоксид не является электролитом. Резкое отличие вещества от простых эфиров и, в частности, склонность его к реакциям присоединения аналогично непредельным соединениям, долгое время было причиной дискуссий химиков вокруг молекулярной структуры окиси этилена. Только в 1893 году была предположена гетероцикличная трёхчленная структура этиленоксида с искажёнными углами по сравнению с другими кислородсодержащими органическими соединениями. Первый способ получения окиси этилена долгое время оставался единственным, несмотря на многочисленные попытки учёных, включая самого Вюрца, синтезировать соединение напрямую из этилена. Только в 1931 году французский химик Теодор Лефорт разработал метод прямого окисления этилена в присутствии серебряного катализатора. Это способ в конце XX века стал основным методом современного промышленного производства окиси этилена. Строение и параметры молекулыЭпоксидный цикл окиси этилена представляет собой практически правильный треугольник с валентными углами около 60° и значительным угловым напряжением, для сравнения в спиртах угол C−O−H составляет около 110°, в простых эфирах угол C−O−С: 120°. Величина этого напряжения оценивается энергией в 105 кДж/моль. Моменты инерции относительно главных осей: IA = 32,921⋅10 −40 г·см², IB = 37,926⋅10 −40 г·см², IC = 59,510⋅10 −40 г·см². Относительную неустойчивость углерод-кислородных связей в молекуле показывает сравнение энергии разрыва двух связей C−O в окиси этилена с энергией разрыва одной связи C−O в этаноле и диметиловом эфире: они близки по значению — разница составляет 12,7 % и 5,9 % соответственно:
Особенности строения молекулы окиси этилена определяют его химическую активность и объясняют лёгкость раскрытия цикла в многочисленных реакциях присоединения . Физические свойстваОкись этилена — бесцветный газ (при 25 °C) или подвижная жидкость (при 0 °C) с характерным эфирным сладковатым запахом, ощутимым при концентрации в воздухе свыше 500 частей на миллион. Хорошо растворима в воде, спирте, эфире и многих других органических растворителях. Температура кипения: 10,7 °C; температура плавления: −111,3 °C; плотность жидкой окиси этилена при температуре 10 °C относительно воды при той же температуре: 0,8824. Основные термодинамические характеристики:
Некоторые физические константы окиси этилена: Поверхностное натяжение в жидком состоянии на границе с собственным паром:
Температура кипения при давлении пара выше 101,3 кПа:
Вязкость:
Уравнение зависимости давления пара в интервале от −91 до 10,5 °C: lg(p [мм рт. ст.]) = 6,251 − 1115,1 / (244,14 + t [°C]). Дипольный момент при температуре 17—176 °C: 6,26⋅10 −30 Кл·м (1,89 Д). Физические свойства жидкой окиси этилена в температурном диапазоне от −40 до 195,8 °C:
Физические свойства паров окиси этилена в температурном диапазоне от 298 до 800 К:
Химические свойстваБлагодаря особенностям молекулярной структуры , окись этилена является весьма реакционноспособным соединением и легко вступает в реакции с различными соединениями с разрывом связи C−O и раскрытием цикла. Для соединения наиболее характерны реакции с нуклеофилами, проходящие по механизму SN2 как в кислой (слабые нуклеофилы: вода, спирты), так и щелочной среде (сильные нуклеофилы: OH − , RO − , NH3, RNH2, RR’NH и пр.). Общий вид реакций: Далее будут рассмотрены наиболее типичные химические реакции с участием окиси этилена. Присоединение воды и спиртовВодные растворы окиси этилена довольно устойчивы и могут длительное время существовать без заметного протекания химической реакции, однако добавление небольшого количества кислоты сразу же приводит к образованию этиленгликоля даже при комнатной температуре: Реакцию можно проводить и в газовой фазе, используя в качестве катализатора соли фосфорной кислоты. Обычно, на практике, реакцию проводят при температуре около 60 °C при большом избытке воды, чтобы исключить реакцию образовавшегося этиленгликоля с этиленоксидом, в результате чего образуются ди- и триэтиленгликоли: Использование щелочных катализаторов может привести к образованию полиэтиленгликоля: Аналогично протекает реакция со спиртами, в результате чего образуются эфиры этиленгликоля (целлозольвы): Реакция с низшими спиртами протекает менее активно, чем с водой, требует более жёстких условий (нагревание до 160 °C, давление до 3 МПа) и присутствия кислотного или щелочного катализатора. Реакция окиси этилена с высшими жирными спиртами, используемая для получения поверхностно-активных соединений, протекает в присутствии металлического натрия, гидроксида натрия или трифторида бора. Присоединение карбоновых кислот и их производныхПри взаимодействии окиси этилена в присутствии катализаторов с карбоновыми кислотами получаются неполные, а с ангидридами кислот — полные эфиры гликолей: По аналогии возможно и присоединение амидов кислот: Присоединение окиси этилена к высшим карбоновым кислотам производят при повышенной температуре (обычно 140—180 °C) и давлении (0,3—0,5 МПа) в инертной атмосфере в присутствии щелочного катализатора (концентрация: 0,01—2 %) — гидроксида или карбоната натрия (калия). В качестве нуклеофила в реакции выступает карбоксилат-ион: Присоединение аммиака и аминовОкись этилена вступает в реакцию с аммиаком, образуя смесь моно-, ди- и триэтаноламина: Аналогично может протекать реакция и с первичными и вторичными аминами: Диалкиламиноэтанолы могут дальше реагировать с окисью этилена, образуя аминополиэтиленгликоли: Здесь (ads) — частицы, адсорбированные на поверхности катализатора; (adj) — частицы серебра, непосредственно граничащие с атомами кислорода. Общая схема реакции будет выглядеть следующим образом: Таким образом была определена максимальная степень конверсии этилена в окись этилена: 6/7 или 85,7 %. Данный механизм согласовывался с исследованиями W.Herzog, который использовал в качестве окислителя оксид азота (I): Более поздние исследования механизма окисления этилена с использованием серебряного катализатора показали, что данный механизм не вполне корректен, а процесс образования окиси этилена начинается только после активации металла кислородом и внедрения молекул кислорода внутрь поверхности катализатора. Именно этот активный подповерхностный кислород и вступает в дальнейшую реакцию с этиленом, позволяя совершать селективное окисление, позволяющее довести теоретическую конверсию этилена в эпоксид до 100 % . Поиск катализатора для проведения реакции селективного окисления этилена, успешно осуществлённый в 1930-х годах, привёл к металлическому серебру, осаждённому на различных носителях (пемза, силикагель, различные силикаты и алюмосиликаты, оксид алюминия, карбид кремния и пр.) и активированного специальными добавками (сурьма, висмут, пероксид бария и пр.). Эксперимент показал, что оптимальными условиями для проведения реакции является температура 220—280 °C (более низкая температура делает катализатор малоактивным, а более высокая уменьшает селективность реакции за счёт более глубокого окисления этилена) и давление 1—3 МПа (увеличивает производительность катализатора и облегчает абсорбцию окиси этилена из реакционных газов). Несмотря на существование единого фундаментального химического процесса каталитического окисления этилена, на практике существуют две различные технологические схемы окисления: более старая, предполагающая использование воздуха, и новая с использованием кислорода (>95 %). Сравнительный анализ двух схем представлен в нижеследующей таблице:
Помимо общеэкономических соображений, преимущество окисления этилена кислородом заключается в следующем:
Мировое производство окиси этиленаОксид этилена является одним из крупнейших по объёму органических полупродуктов мирового химического производства, уступая по данным на 2008 год лишь этилену (113 млн тонн в 2008 году), пропилену (73 млн тонн в 2008 году), этанолу (52 млн тонн в 2008 году), бензолу (41 млн тонн в 2008 году), метанолу (40 млн тонн в 2008 году), терефталевой кислоте (39 млн тонн в 2008 году), винилхлориду (36,7 млн тонн в 2008 году), дихлорэтану (36,6 млн тонн в 2008 году), этилбензолу (29,2 млн тонн в 2008 году), п-ксилолу (28 млн тонн в 2008 году), стиролу (26 млн тонн в 2008 году), н-бутилену (21 млн тонн в 2008 году) и толуолу (20 млн тонн в 2008 году). Производство окиси этилена является вторым после полиэтилена по значимости направлением использования этилена как важнейшего химического сырья и составляет 14,6 % его мирового потребления (по данным на 2008 год). Мировое производство окиси этилена в 2012 году составило 21 млн тонн (в 2010 году — 19,5 млн тонн, 2008 году — 19 млн тонн, 2007 году — 18 млн тонн), что составляет около 90 % всех мировых производственных мощностей (в 2007 году — 93 %). По прогнозным данным компании Merchant Research and Consulting Ltd. к 2016 году потребление окиси этилена вырастет до 24,2 млн тонн. По состоянию на 2004 год мировое производство окиси этилена по регионам выглядит следующим образом:
Крупнейшие мировые производители окиси этилена по объёму производственных мощностей, по состоянию на 2006 год (№ 1, 2, 5, 6), 2008—2009 гг. (№ 3, 4, 7):
1000 тыс. тонн; По данным на 2013 год 39 % мирового производства окиси этилена приходится на Азию, а 45 % сосредоточено в трёх странах — США, Китае и Саудовской Аравии. По состоянию на 2013 год крупнейшими мировыми производителями окиси этилена являются компании Shell, Dow Chemical Company, SINOPEC Corp., Honam Petrochemical Corp, Ineos Oxide, Nan Ya Plastics Corp, Yanbu National Petrochemical Co, Saudi Kayan Petrochemical Company, MEGlobal и Shanghai Petrochemical. Производителями окиси этилена, входящими в европейскую «Ассоциацию производителей окиси этилена и производных» (англ. Ethylene Oxide & Derivatives Producers Association ), являются компании: Akzo Nobel Functional Chemical, BASF, Clariant, Dow Europe, Ineos Oxide, La Seda de Barcelona, Lukoil Neftochim, ME Global, Sabic, Sasol Germany, Shell Chemicals. Производство окиси этилена в РоссииПроизводство окиси этилена в России осуществляется на следующих предприятиях:
Проектная мощность на 2008 год: 320 тыс. тонн/год. Объём производства в 2008 году: 248,8 тыс. тонн.
Проектная мощность на 2008 год: 240 тыс. тонн/год. Объём производства в 2008 году: 239 тыс. тонн, в том числе товарной окиси этилена 80,4 тыс. тонн.
Проектная мощность на 2008 год: 60 тыс. тонн/год. Объём производства в 2008 году: 44 тыс. тонн. Общий объём производства окиси этилена в России в 2008 году составил 531,7 тыс. тонн, что на 2 % ниже показателя 2007 года. Производство окиси этилена в России осуществляется в соответствии с ГОСТ 7568-88. ПрименениеОсновным направлением использования окиси этилена является получение этиленгликолей: до 75 % всего глобального потребления. Среди других ключевых производных можно выделить этоксилаты, этаноламины, простые и сложные эфиры этиленгликоля, полиэтиленгликоль. Промышленное производство на основе окиси этиленаОсновные направления промышленного использованияОкись этилена — важнейшее сырьё, используемое в производстве крупнотоннажной химической продукции, являющейся основой для большого числа разнообразных товаров народного потребления во всех промышленно развитых странах. Основные направления использования окиси этилена:
Крупнейшим направлением использования окиси этилена является производство этиленгликолей, однако процент его применения в этом виде сильно варьирует в зависимости от региона: от 44 % в Западной Европе, 63 % Японии и 73 % в Северной Америке до 90 % в остальной части Азии и 99 % в Африке. Производство этиленгликоляВ промышленности этиленгликоль получают некаталитической гидратацией окиси этилена при температуре до 200 °C и давлении 1,5—2 МПа: Побочными продуктами реакции будут диэтиленгликоль, триэтиленгликоль и полигликоли (суммарно около 10 %), которые отделяются от этиленгликоля дистилляцией при пониженном давлении. Другой метод: реакция окиси этилена и CO2 с промежуточным получением этиленкарбоната (температура 80—120 °C и давление 2—5 МПа) и его последующий гидролиз с декарбоксилированием: В настоящий момент самыми современными технологиями производства этиленгликоля в мире являются:
Производство эфиров гликолейОсновными эфирами моно-, ди- и триэтиленгликолей, производимыми в промышленных объёмах, являются метиловый, этиловый и нормальный бутиловый, а также их ацетаты и фталаты. Химическая схема производства заключается в реакции соответствующего спирта с окисью этилена: Реакция моноэфиров с кислотой или её ангидридом приводит к образованию соответствующих сложных эфиров: Производство этаноламиновВ промышленности этаноламины (моно-, ди- и триэтаноламины) получают по реакции аммиака с окисью этилена в безводной среде при температуре 40—70 °C, давлении 1,5—3,5 МПа: В процессе реакции образуются все три этаноламина, при этом аммиак и часть моноэтаноламина подвергаются рециркуляции. Разделение готовых продуктов осуществляется с помощью вакуумной дистилляции. Аналогично получают и различные гидроксиалкиламины: Монозамещённые продукты образуются при действии на большой избыток амина окиси этилена в присутствии воды и температуре менее 100 °C; дизамещённые — при небольшом избытке окиси этилена, температуре 120—140 °C и давлении 0,3—0,5 МПа. Производство этоксилатовПроизводство этоксилатов в промышленности осуществляют прямой реакцией высших спиртов, кислот или аминов с окисью этилена в присутствии щелочного катализатора при температуре 120—180 °C. Схематичное изображение производства этоксилатов В настоящий момент в промышленности новые мощности по выпуску этоксилатов обычно основаны на The BUSS LOOP® reactors technology. The BUSS LOOP® reactors technology представляет собой непрерывный процесс, включающий в себя три стадии:
Производство акрилонитрилаВ настоящий момент производство акрилонитрила производится преимущественно (90 % по состоянию на 2008 год) SOHIO-методом, однако вплоть до 1960 года одним из важнейших производственных процессов его получения был метод присоединения цианистого водорода к окиси этилена с последующей дегидратацией образующегося циангидрина: Присоединение синильной кислоты к окиси этилена осуществляется в присутствии катализатора (гидроксид натрия и диэтиламин), а дегидратация циангидрина происходит в газовой фазе при каталитическом воздействии активного оксида алюминия. Прочие направления использованияПрямое использование окиси этилена в различных отраслях экономики, по состоянию на 2004 год, составляет всего 0,05 % всего мирового объёма производства. Этиленоксид используется как фумигант и дезинфицирующее вещество в смеси с диоксидом углерода (8,5—80 % окиси этилена), азотом или дихлордифторметаном (12 % окиси этилена) для газовой стерилизации медицинского оборудования и инструмента, шприцев, упаковочных материалов и спецодежды, лекарственных форм, хирургического и научного оборудования; обработки мест хранения различных растительных продуктов (табак, упаковки с зерном, мешки с рисом и т. п.), одежды и меха, ценных документов. Кроме того, окись этилена применяется в качестве ускорителя созревания листьев табака и фунгицида в сельском хозяйстве. Специфическим направлением использования окиси этилена является её возможность применения в качестве основного компонента боеприпасов объёмного взрыва. Идентификация окиси этиленаПростейшей качественной реакцией может служить свойство окиси этилена осаждать нерастворимые гидроксиды металлов при его пропускании через водные растворы солей, например: По аналогии, пропуская воздух через водный раствор некоторых солей натрия или калия (хлориды, иодиды, неорганические тиосульфаты и др.) с добавлением фенолфталеина, окись этилена обнаруживается по появлению ярко-розовой окраски индикатора: Существует множество других методов идентификации окиси этилена в присутствии различных сопутствующих веществ, среди которых можно упомянуть:
Основным физическим методом определения окиси этилена в различных средах является газовая хроматография. Огне- и пожароопасностьВещество является чрезвычайно огнеопасным, его смеси с воздухом взрывоопасны. При нагревании из-за бурного разложения существует риск пожара и взрыва. Температура самовоспламенения составляет 429 °C; минимальное огнеопасное содержание в воздухе: 2,7 % об. Для тушения огня, вызванного возгоранием окиси этилена, используются традиционные средства пожаротушения, включая пену, углекислый газ и воду. Борьба с горящей окисью этилена затруднена, так как в определённых условиях он может продолжать гореть и в инертной атмосфере, а также в виде водного раствора — для гарантированного гашения огня необходимо разбавление водой в отношении не менее чем 22:1. Источник |