Способ получения нетканого материала

Основные способы получения нетканых материалов

Неткаными материаламиназывают изделия малой толщины, сравнительно большой ширины и неопределенно большой длины, изготовленные из одного или нескольких слоев текстильных материалов (волокнистой ватки, нитей и ткани малой плотности и др.) и скрепленных различными способов.

Нетканые материалы состоят из двух элементов, один из них выполняет роль базового, другой — связующего. Базовый элемент – основа нетканого материала. В качестве базового элемента используют волокнистый холст, систему нитей, полимерную пленку, имеющую волокнистую структуру, ткани или сочетания этих материалов. В качестве связующего, который используется для скрепления базового элемента, могут быть использованы нити, волокна из базового, волокнистого холста, полимерные вещества (полиэтилен, каучуки), химические волокна с низкой температурой плавления.

В производстве нетканых материалов используются механическая, химическая технология и их сочетания. Виды технологий отличаются способами скрепления слоев текстильных материалов. Для получения этих материалов имеется различное технологическое оборудование

Технология производства нетканых материалов проста, она включает

подготовка волокон, холстообразование, скрепление волокон путем создания связей между элементами материала ,отделка материала для придания ему определенных свойств (цвета, пушистости и т.д.).

Особенностью производства нетканых материалов является использование сырья низкого качества, обратов производства, коротких волокон (до 3 мм) из отходов производства. Сырье перерабатывается при небольшом числе операций, поэтому подготовка сырья осуществляется очень тщательно. В процессе этой операции волокна разрыхляют и очищают от растительных и минеральных примесей, подбирают компоненты для получения однородной смеси волокон, подготавливают волокнистое сырье к холстообразованию и дальнейшей переработке.

Существует 4 способа формирования холстов:механический, аэродинамический, электростатический и гидравлический.

Сущность механического способа холстообразования состоит в формировании холста из нескольких слоев ватки, полученной с чесальных машин и аппаратов. При этом методе используют шляпочные, валичные чесальные машины

Сущность аэродинамического способа заключается в формировании холста из предварительно разрыхленных волокон, движущихся в воздушном потоке. Применяются обычные чесальные машины, оборудованные дополнительными устройствами (приставками).

Сущность электростатического способа холстообразования основано на свойстве волокон приобретать заряды статического электричества Управляя, расположением волокон на специальном транспорте, можно получать материалы с хорошими диэлектрическими свойствами. При этом способе применяются специальные устройства.

Сущность гидравлического способа холстообразования основано на формировании холста из водной суспензии с содержанием волокон 2-8 %.

Для скрепления волокон между элементами материала существуют много способов, но практикуют чаще всего вязально-прошивной, игольно-набивной и клеевой.

При вязально-прошивном способе полотно нетканого материала формируется провязыванием или прошивкой волокнистого холста пряжей или комплексными нитями. Нетканые материалы, получаемые этим способом близки по внешнему виду и свойствам к тканям, которые идут для изготовления костюмов, платьев, одеял, полотенечно — салфеточных и других изделий.

При игольно-набивном способе полотно нетканого материала формируется либо наложением волокнистого холста на ткань малой плотности и набивки в нее иглами, либо пробивается иглами без применения подкладочной ткани. Нетканые материалы, изготовленные этим способом мягки на ощупь и хорошо драпируются.

При клеевом способе получении нетканых материалов возможны два варианта:склеивание волокон сухим и мокрым способами. В первом случае используют сухие связующие: термопластичные штапельные волокна и нити, порошки, пленки, которые имеют более низкую температуру плавления, чем волокна базового элемента. При мокром способе применяют жидкие связующие в виде дисперсий полимеров, так называемые эмульсии. Клеевые нетканые материалы широко применяются в качестве бортовки, обивочных, декоративных, фильтровальных, изоляционных и подкладочных материалов.

В зависимости от назначения нетканые материалы выпускают в суровом виде или подвергают соответствующей отделке: валке, крашению, сушке, ворсовке, стрижке и др.

Производство нетканых материалов эффективно ,так как оно базируется на новой технологии, позволяющей ликвидировать такие трудоемкие процессы ,как прядение и ткачество, резко повысить производительность труда, автоматизировать процессы производства, применять дешевое сырье, как отходы текстильного производства, непрядомые волокна, вторичное сырье.

Ведутся работы по дальнейшему совершенствованию технологии, созданию физико-химических способов получения нетканых материалов, организации автоматизированного производства, созданию поточных линий и фабрик-автоматов

Вопросы для самопроверки.

1.Какие сырьевые ресурсы используются в текстильной промышленности?

2. Назовите стадии технологического процесса в текстильной промышленности и ткацком производстве.

3. Что подразумевают под системой прядения? Назовите и охарактеризуйте их.

4.Какой процесс называется ткачеством?

5.Какие нити в ткацком производстве используются для формирования ткани?

6.Перечислите операции технологического процесса получения тканей?

7.Из каких элементов состоят нетканые материалы?

8.В чем особенности производства нетканых материалов?

9.Назовите способы формирования холстов при изготовлении нетканых материалов.

Источник

Способы и технологии изготовления нетканых материалов

Сегодня нетканые материалы используются в различных сферах деятельности. Это и строительство, и промышленность, и благоустройство территорий и даже производство спецодежды для медицинских целей. Такое широкое применение требует достаточных мощностей для изготовления нужного объема продукции. Благодаря специальным способам и технологиям, а также изобилию современных синтетических материалов производство нетканых материалов – низкозатратный вид деятельности. Это же обеспечивает и доступную рыночную стоимость подобного текстиля.

Три основных технологии изготовления нетканого текстиля и их подвиды

Технологии производства нетканых материалов можно условно разделить на три основных категории. Каждая из них имеет свои особенности и подходит для производства продукции с заданными параметрами – плотностью, прочностью на разрыв, стойкостью к механическим повреждениям.

Три способа получения нетканого полотна:

  • механический, не подразумевающий использование клеевых составов, а также высоких температур;
  • физико-химический – с применением термического воздействия, специальных составов для пропитки и склейки волокон, фильерных машин;
  • комбинированный – сочетание первых двух.
Читайте также:  Способ агрегатирования с трактором

Каждый из методов имеет свои преимущества, выбирают нужную технологию, исходя из конечных требований к продукции, наличия оборудования и типа материала.

Механические способы получения текстиля

Методы изготовления нетканого текстильного полотна с помощью механических процессов отличаются высокой степенью экологичности. В составе готовой продукции нет клеевых составов и пропиток, способных выделять в атмосферу и окружающую влагу (это актуально для дренажных полотен и других видов геотекстиля) вредные химические соединения.

Соединение волокон в составе получаемого материала происходит за счет силы трения и последующего скрепления волокнистого сырья путем сцепления естественных неровностей между собой. В первую очередь механические методы подходят для производства текстиля из натурального сырья – растительного или животного происхождения.

К механическим способам производства нетканых полотен относят:

  • Вязально-прошивной – основу многократно прошивают объединяя волокнистое сырье, в получаемом полотне, на вид напоминающем ткань, присутствуют три вида нитей – основа, уток и прошивные;
  • Иглопробивной – подготовленная основа из волокон естественного или искусственного происхождения с помощью специального оборудования пробивается большим количество зазубренных игр, неровности на которых захватывают пучки волокна, объединяя его в единое целое;
  • Валяльно-войлочный – применяется только для работы с натуральным волокнистым сырьем, способ основывается на способности шерсти свойлачиваться при механическом воздействии за счет наличия микроскопических бороздок на поверхности шерстинок.

Механические методы – часто применяемые для получения мебельного нетканого полотна, утеплителей, а также материала, используемого в изготовлении одежды.

Физико-химические методы изготовления нетканого полотна

Один из распространенных методов получения нетканых полотен – фильерный. Он обладает большим преимуществом, благодаря особенностям технологии для производства не требуется исходной основы из волокнистых материалов. Для изготовления полотна применяют один из полимеров в гранулированном виде:

В специальном оборудовании получают расплав сырья и через маленькие технологические отверстия его укладывают беспорядочно на специальную платформу, расплавленная синтетика скрепляется между собой и получается готовое полотно. Минус способа – обязательно требуется современное оборудование – фильерная машина. Но преимущества – компактность производства, скорость получения продукции, сниженная трудоемкость полностью перекрывают этот недостаток.

Существует еще два метода изготовления нетканых материалов в этой категории – формирование клеевого полотна с жидким или твердым связующим.

В первом случае для скрепления волокнистого сырья применяют водные дисперсии клеящих веществ – латекса, каучука, акрилатных составов. Заготовку либо погружают в подготовленный раствор, либо проводят обрызг. После чего будущее полотно высушивают и подвергают термообработке.

Второй подвид технологии характеризуется применением специальных термоскрепляющих веществ. Это могут быть термопластичные латексы, гранулированные полимеры, порошки, отличающиеся низкой температурой плавления. Заготовку, включающую в себя основу и термопластичные элементы, подвергают воздействию повышенных температур, вследствие чего волокна сплавляются между собой, образуя достаточно прочное соединение.

Комбинированные технологии

Кроме вышеперечисленных методов производства для получения нетканого текстиля используют комбинированные методы. В изготовлении используют сочетание механических способов и физико-химических.

Яркий пример – производство иглопробивного полотна с пропиткой или термоскреплением. Сочетание двух и более способов позволяет достичь большей прочности на разрыв и устойчивости к механическим и иным повреждениям. К материалам, изготовленным комбинированными методами, относят синтепон, ватилин, ватин.

Источник

Способы получения нетканых материалов

Понятие о нетканых материалах

Неткаными материалами называют изделия малой толщины, сравнительно большой ширины и неопределен­но большой длины, изготовленные из одного или несколь­ких слоев текстильных материалов (волокнистой ватки, нитей, ватки и ткани малой плотности и др.) и скреплен­ных различными способами. Так, если из тонкой ватки, по­лученной на чесальных машинах или аппаратах, сформиро­вать холст из двух или более слоев и скрепить волокна меж­ду собой (например, склеить), получится нетканый материал.

Нетканые материалы состоят из двух элементов, один из которых выполняет роль базового, а второй — связующего. Базовый элемент, несущий основную нагрузку при эксплуатации, является основой нетканого материала. В качестве базовою материала используют волокнистый холст, систему нитей, полимерную пленку, имеющую во­локнистую структуру, ткани или сочетания этих материа­лов. Связующий элемент служит для связывания (скреп­ления) базового элемента для придания последнему опре­деленных свойств. В качестве связующих могут быть использованы нити, волокна из базового волокнистого хол­ста, полимерные вещества (полиэтилен, каучуки), хими­ческие волокна с низкой температурой плавления.

В производстве нетканых материалов используются ме­ханическая, химическая технологии и их сочетания. Эти виды технологий соответствуют различным способам скреп­ления слоев текстильных материалов. Для получения не­тканых материалов создано различное технологическое обо­рудование.

Технология производства нетканых материалов вклю­чает следующие операции: подготовка волокон, холстообразование, скрепление волокон путем создания связей меж­ду элементами материала и отделка материала для прида­ния определенных свойств (цвета, пушистости и т. д.).

Получение нетканых материалов

Волокнистая основа нетканых материалов изготавли­вается из волокон различных видов — натуральных и хи­мических. Особенностью производства нетканых материа­лов является использование сырья низкого качества, обратов производства, восстановленной и заводской шерсти, коротких волокон (до 3 мм) из отходов производства.

Сырье при производстве нетканых материалов перера­батывается в готовый материал при небольшом числе пе­реходов, поэтому сырье должно подготавливаться очень тщательно.

Задача подготовки волокнистого сырья — получение од­нородной смеси волокон, предназначенной для формиро­вания нетканого материала. В ходе подготовки «волокна разрыхляют и очищают от растительных и минеральных примесей, подбирают компоненты и образуют из них однородную смесь необходимого качества, подготавливают во­локнистое сырье к холстообразованию и дальнейшей пере­работке. Методы подготовки сырья для нетканых материа­лов не отличаются от тех, которые используют в обычном текстильном производстве.

Для получения нетканых материалов необходимо под­готовить волокнистые холсты, в которых волокна удержи­ваются силами сцепления. Существует четыре способа фор­мирования холстов: механический, аэродинамический, электростатический и гидравлический.

Сущность механического способа холстообразования состоит в формировании холста из нескольких слоев ватки с чесальных машин и аппаратов. В зависимости от требуе­мых свойств нетканого материала слои ватки можно распо­ложить по-разному: с одинаковой во всех слоях ориента­цией волокон, с перекрещивающимся их расположением, комбинацией слоев с ориентированным и перекрещиваю­щимся расположением волокон.

Читайте также:  Нистатина таблетки способ применения

Для получения холстов используют шляпочные, налич­ные чесальные машины или двухпрочесные чесальные ап­параты. Ватка с этих машин укладывается в холст с помо­щью специальных транспортеров — механических преоб­разователей прочеса. В большинстве случаев они состоят из систем решеток, совершающих качательное движение поперек транспортера или возвратно-поступательное дви­жение. Свойства нетканого материала зависят от толщи­ны и веса холста, а последние — от толщины и числа сло­жений слоев ватки.

При аэродинамическом способе применяются пневма­тические установки. Сырье, сначала разрыхляется с помо­щью расчесывающих устройств, а затем из волокон, дви­жущихся в воздушном потоке, формируется холст. Аэро­динамическое образование холста можно осуществить на обычных чесальных машинах, оборудованных дополни­тельными устройствами (приставками) для аэродинамичес­кого формирования холста.

Волокна с чесальной машины, увлекаемые воздушны­ми потоками, направляются на поверхность сетчатого ба­рабана приставки, который медленно вращается. На поверхности сетчатого барабана образуется слой волокон, так как внутри барабана воздух отсасывается специаль­ными вентиляторами- Образованный на поверхности ба­рабана холст передается на последующий технологичес­кий переход.

Электростатическое холстообразование основано на свойстве волокон приобретать заряды статического элект­ричества. Это позволяет управлять расположением волокон на специальном транспортере. В результате получаются ма­териалы с хорошими диэлектрическими свойствами.

Устройство для электростатического образования хол­ста работает следующим образом. Короткие волокна из пи­тателя поступают на транспортер, с которого сбрасывают­ся на поверхность вращающегося барабана. По выходе с транспортера они проходят около проводника, находяще­гося под током напряжением 15000 В, что обеспечивает снятие с волокон зарядов любой величины. Далее волокна подают на участок, в котором расположен электрод, свя­занный с источником высокого напряжения. На этом участке они приобретают отрицательный заряд.

Попадая на вращающийся заземленный барабан, волок­на прилипают к его поверхности. Затем волокна перено­сятся по направлению к транспорту, под которым враща­ется барабан с шаблоном, заряженным положительно, и результате чего волокна прилипают к транспортеру и об­разуют холст. Те волокна, которые не переходят на транс­портер, снимаются с барабана роликом, имеющим положительный заряд, и направляются на дополнительный транспортер, который возвращает их для повторной пере­работки с вновь поступающими волокнами.

При гидравлическом способе холст формируют из сус­пензии, содержащей волокна в количестве 2—8%. Суспен­зия направляется на сетку-транспортер машины, при этом влага частично свободно стекает, а частично удаляется спе­циальными устройствами. Холст затем подвергают термооб­работке, в процессе которой связующее склеивает волокна.

Из многих способов получения нетканых материалов чаще всего практикуют вязально-прошивной, игольнонабивной, клеевой.

При вязально-прошивном способе холст 5 подается в вязально-прошивную машину, с помощью транспортера 6 (систему игл 3) где прошивается (или провязывается) пря­жей или комплексными нитями 2 (рис. 41). Число про­шивных нитей в бобинах или навоях 1 равно числу рядов прошивки холста по ширине полотна 4.

Если нетканые материалы изготавливаются с исполь­зованием сетки из продольно и пи перечне уложенных ни­тей, скрепление последних друг с другом производится пу­тем провязывания нитями третьей системы (с навоев).

Нетканые материалы, полученные этим способом, близ­ки по внешнему виду и свойствам к тканям. Они идут для изготовления костюмов, платьев, одеял, полотенечно-салфеточных и других изделий.

При игольно набивном способе (рис. 42) волокнистый холст 2, подаваемый транспортером I, либо накладывает­ся на ткань 3 малой плотности (каркас) и набивается в нее иглами 4, которые закреплены на игольнице 5, совершающей возвратно-поступательные движения вверх и вниз, либо пробивается иглами без применения подкладочной ткани. Благодаря существующим на иглах 4 выступам-за­усеницам волокна потно внедряются в ткань, поддержи­ваемую проволочной или деревянной решеткой или в холст, а. полученный нетканый материал наматывается на валик 6.

Нетканые материалы, изготовленные игольно-набивным способом мягки на ощупь и хорошо драпируются» Масса 1 м 2 колеблется от 50 до 70 г. Свойства этих поло­тен колеблются в значительных пределах, что позволяет получить широкий ассортимент изделий. На свойства ока­зывают влияние вид применяемого волокна, число проко­лов на единицу площади полотна, расположение, волокон в холсте и свойства каркаса (если он имеется).

При клеевом получении нетканых материалов возмож­ны два варианта — склеивание сухим и мокрым способа­ми. При склеивании сухим способом используют сухие свя­зующие: термопластичные штапельные волокна и нити (аце­татные, поливинилхлоридные, полиамидные), порошки, пленки (полихлорвиниловые) и т. д. Они имеют более низ­кую температуру плавления, чем волокна базового элемента.

При мокром способе склеивания холстов применяют жидкие связующие в виде дисперсий полимеров. В качест­ве жидких связующих широко распространены водные змульсии (поливинилового спирта, ксантогената целлюло­зы и др.), реже — эмульсии на органических растворите­лях (поливинилхлорида в метиле и хлориде, бутадиенакри-лонитрильного латекса и др.). Скрепление волокон холста жидкими связующими может происходить при сплошном пропитывании или нанесением связующего на отдельные участки холста (например, разбрызгиванием с последую­щей сушкой). Как при сухом, так и при мокром способе холст пропускают через нагретые валы или прогревают ин­фракрасными лучами. В результате затвердения связую­щие вещества между волокнами образуются связи.

На рис. 43 приведена схема машины для получения клееного нетканого материала путем запрессования в холст 1 двух систем нитей 2, пропитываемых в корытах 3 жидким связующим. Затем холст проходит между цилинд­рами 4 через направляющие валики 5 к рулонному вали­ку 6. Если полученный материал разрезать поперек, вид­но, что холст как бы укреплен с двух сторон нитями. Клеевые нетканые материалы широко применяются в качестве бортовки, обивочных, декоративных, фильтровальных, изоляционных и подкладочных материалов.

Полученные нетканые материалы в зависимости от на­значения выпускают в суровом виде или подвергают соот­ветствующей отделке: валке, крашению, сушке, ворсовке, стрижке и др.

Читайте также:  Народный способ лечения грибка ногтей ног

52. Автоматизированные технологии

В настоящее время под роботом понимают автоматический манипулятор с программным управлением.

К биотехническим роботам относятся дистанционно управляемые копирующие роботы; экзоскелетоны; роботы, управляемые человеком с пульта управления; полуавтоматические роботы.

Дистанционно управляемые копирующие роботы снабжены задающим органом(например, манипулятором, полностью идентичным исполнительному), средствами передачи сигналов прямой и обратной связи и средствами отображения информации для человека-оператора о среде, в которой функционирует робот

Роботы, управляемые человеком с пульта управления, снабжаются системой рукояток, клавиш или кнопок, связанных с исполнительными механизмами каналов управления по различным обобщенным координатам. На пульте управления устанавливают средства отображения информации о среде функционирования робота, поступающей к человеку по радиоканалу связи.

Полуавтоматический робот характерен сочетанием ручного и автомати- ческого управления. Он снабжен супервизорным управлением для вмешательства человека в процесс автономного функционирования робота путем сообщения ему дополнительной информации с помощью указания цели, последовательности действий и т. п.

Роботы с автономным или автоматическим управлением обычно подразделяют на производственные и научно-исследовательские роботы, которые после создания и наладки в принципе могут функционировать без участия человека.

Роботы первого поколения (программные роботы) имеют жесткую программу действий и характеризуются наличием элементарной обратной связи с окружающей средой, что вызывает определенные ограничения в их применении.

Роботы второго поколения (очувствленные роботы) обладают коор-динацией движений с восприятием. Они пригодны для малоквалифици-рованного труда при изготовлении изделий. Программа движений робота требует для своей реализации управляющей ЭВМ.

Неотъемлемая часть роботов второго поколения — алгоритмическое и программное обеспечение, предназначенное для обработки сенсорной информации и выработки управляющих воздействий.

Роботы третьего поколения относятся к роботам с искусственным интеллектом. Они создают условия для полной замены человека в области квалифицированного труда, обладают способностью к обучению и адаптации в процессе решения производственных задач. Эти роботы способны понимать язык и вести диалог с человеком, формировать в себе модель внешней среды с той или иной степенью детализации, распознавать и анализировать сложные ситуации, формировать понятия, планировать поведение, строить програм-мные движения исполнительной системы и осуществлять их надежную отработку.

53. Лазерные технологии

Важнейшим достижением явл-ся создание лазерных технологий. Лазер – источник мощного светового монохроматического излучения, которое хар-ся высокой направленностью и большой плотностью энергии, согласованностью колебаний электромагнитных волн. Это излучение формируется в оптич. квантовых генераторах.

Главный элемент лазера, в котором форм-ся излучение, — активная среда. Для ее образования используют: 1) воздействие света нелазерных источников; 2) электрич. разряд в газах; 3) химические реакции.

Активной средой м. б.: 1)твердый материал (стекло, пластмассы и др.) – твердотельные лазеры; 2) газ (неон-гелий) – газовые лазеры; 3) жидкость (с редкоземельными активаторами иои органич. красителями) – жидкостные лазеры; полупроводники (цинк. Сера и др.) – полупроводниковые лазеры.

Лазеры прим-ся в научных исследованиях (физика, химия), в технике (связб, локация, измерительная техника), в практич. медицине (хирургия и офтальмологии), термоядерном синтезе при исследовании внутренней структуры вещ-ва, термообработке, сварке и др.

В настоящее время разработаны технолог. процессы с использованием лазеров:

1) Лазерная поверхностная термообработка исп-ся для обработки инструментов, повышения эксплуатационных характеристик поверхностей. Она включает: а) лазерную закалку – высокотемпературный нагрев поверхности изделия и быстрое охлаждение; б) лазерный отжиг – исп-ся для получения более равновесной структуры, обладающей большей пластичностью и меньшей твердостью; в) лазерное легирование – создание на поверхности обрабатываемого материала покрытий с высокими эксплуатационными свойствами; остекловывание – создание на поверхности материалов, деталей аморфных слоев, обладающих высокой твердостью, коррозийной стойкостью.

2) Лазерная сварка – позволяет сварить толстые слои материала с высокой скоростью. При этом материал, прилегающий к зоне расплава, не подвергается действию высоких температур. Высокая произв-ть малая деформация, возможность подачи энергии в труднодоступные места.

3) Лазерная размерная обработка включает процессы собственно лазерной резки, лазерное сверление, лазерное фрезерование и т.д. она исп-ся для резания сталей, керамики, стекла, пластмасс и др. материалов. Процесс резания идет без образования стружки, а испаряющийся за счет высоких температур металл уносится сжатым воздухом. Сверление исп-ся для обработки крупногабаритных деталей сложной формы, для сверления отверстий в часовых механизмах, алмазных фильерах.

4) Измерительная лазерная технология испол-ся при проведении различных измерений и контроля размеров, контроля качества материалов, изделий. Эти технологии отличаются высокой скоростью, позволяют проводить измерения бесконтактно. Лазерные измерители позволяют обнаружить поверхностные дефекты размером до 1мкм, находить и количественно определять деформации различных деталей.

54. Ультразвуковые технологии

Ультразвуковая технология- сов-ть процессов обработки материалов ультразвуком.

Ультразвук- не слышимые человеческим ухом упругие волны, частоты которых превышают 20кГц.

Ультразвуковые технологии — это технологии, основанные на использовании упругих механических колебаний ультразвуковой частоты. Диапазон ультразвуковых частот простирается от 16 кГц и выше.

Физическая сущность всех процессов основана на явлениях и эффектах, возникающих при возбуждении и распространении в среде ультразвуковых механических колебаний.

При воздействии ультразвуковых колебаний на среду в ней возникают и распространяются переменные смещения — периодически чередующиеся сжатие и разрежение частиц этой среды.

В одних технологических процессах эти явления и эффекты имеют определяющий характер, в других — сопутствующий, повышающий эффективность других протекающих процессов.

Применение ультразвука часто позволяет решать задачи, которые другими методами не решаются, например, удаление сильных загрязнений (очистка) изделий сложной конфигурации с глухими отверстиями или микрокапиллярных структур, сварка разнородных и разнотолщинных металлов, пайка и лужение материалов с окисными плёнками и керамики, диспергирование и эмульгирование трудно смешиваемых составов, интенсификация процессов приготовления компаундов, красителей и многие другие.

Ассистент кафедры ИСиВМ КобцеваГ.П.

Дата добавления: 2018-10-26 ; просмотров: 1358 ; Мы поможем в написании вашей работы!

Источник

Оцените статью
Разные способы