- СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ, СОДЕРЖАЩИХ ЖИВЫЕ МИКРООРГАНИЗМЫ Российский патент 2004 года по МПК A61K9/54 A61K31/79
- Описание патента на изобретение RU2220716C1
- Похожие патенты RU2220716C1
- Иллюстрации к изобретению RU 2 220 716 C1
- Реферат патента 2004 года СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ, СОДЕРЖАЩИХ ЖИВЫЕ МИКРООРГАНИЗМЫ
- Формула изобретения RU 2 220 716 C1
- СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ Российский патент 2016 года по МПК A61K31/65 A61K31/4164 A61K31/4184 A61K31/345 A61K47/36 A61K9/50 A61J3/07
- Описание патента на изобретение RU2582274C1
- Похожие патенты RU2582274C1
- Иллюстрации к изобретению RU 2 582 274 C1
- Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ
- Формула изобретения RU 2 582 274 C1
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ, СОДЕРЖАЩИХ ЖИВЫЕ МИКРООРГАНИЗМЫ Российский патент 2004 года по МПК A61K9/54 A61K31/79
Описание патента на изобретение RU2220716C1
Изобретение относится к медицине, а именно к технологии лекарственных форм с бактерийными препаратами.
Для коррекции дисбиотических состояний в медицинской практике широко применяются различные препараты, созданные на основе живых штаммов микроорганизмов, входящих в состав нормальной флоры.
В последнее время различные исследователи уделяют большое внимание использованию микрокапсулированных форм бактерийных препаратов. Вещества, используемые в качестве инкапсулирующего покрытия для микроорганизмов должны обеспечивать их стабильность при длительном хранении и равномерное высвобождение при непосредственном применении во влажных средах организма.
Особый интерес вызывают микрокапсулированные формы лактобактерий, полученные на основе поливинилпирролидона. Этот полимер нетоксичен, не опасен для человека и микроорганизмов, разрешен для использования в медицинских целях. Он отличается хорошей растворимостью в неорганических растворителях, в том числе в воде, причем его растворимость не зависит от рН среды, что позволяет использовать его для получения микрокапсулированных форм лактобактерий, предназначенных для растворения в различных средах, в том числе и для производства микрокапсул для наружного применения (в виде присыпок).
Известен способ получения микрокапсулированных форм лактобактерий с помощью водных растворов сшитого или линейного поливинилпирролидона (патент США 5733568, НПК 424-422, 1998 г.). Суть его заключается в следующем: лиофилизированную культуру лактобактерий диспергируют при температуре около 0 o С в растворе сшитого или линейного поливинилпирролидона при постоянном перемешивании, а затем проводят сшивку полимера дивинилбензеном. При этом бактерии берут с таким расчетом, чтобы в готовых микрокапсулах было не менее 10 3 бактерий в одной микрокапсуле.
При воспроизведении данного способа в условиях лаборатории выявлено, что количество жизнеспособных лактобактерий, сохранившихся в процессе микрокапсулирования и определенных после разрушения оболочки фосфатным буфером, составляет менее 10 4 в 1,0 грамме микрокапсул.
К недостаткам этого способа следует отнести высокий показатель потерь микроорганизмов в ходе технологического процесса, который достигает 10 4 клеток и более, и использование в качестве агента для сшивки полимера дивинилбензена, являющегося токсичным органическим реагентом. Применение этого вещества приводит, с одной стороны, к значительным потерям микроорганизмов в ходе процесса микрокапсулирования, с другой — представляет опасность для человека, т.к. является умеренно токсичным веществом.
Задачей изобретения явилось снижение потерь живых микроорганизмов и повышение безопасности процесса за счет исключения токсичных реагентов.
Поставленная задача была решена при использовании в качестве отверждающего агента такого природного вещества, как танин, получаемого из растительного сырья (сумах, скумпия и др.) и представляющего собой сумму полисахаридов, насыщенных полифенольными группами.
Для изготовления микрокапсул взята лиофилизированная культура лактобактерий, содержащая 10 8 клеток в 1,0 грамме.
Сущность изобретения состоит в том, что лиофилизированную культуру микроорганизмов (в чистом виде или на защитном носителе полисахаридной структуры) диспергируют при охлаждении в 30-50% водном растворе поливинилпирролидона с молекулярной массой 15000 (см. таблицу) в соотношении от 1:10 до 1: 15 по массе при перемешивании до образования взвеси, содержащей отдельные частицы требуемого размера. К полученной взвеси прибавляют раствор сшивающего агента (дубителя) — 10%-30% водный раствор танина (ГФX, ст.658). Смесь перемешивают в течение 30-180 минут, после чего отвержденные микрокапсулы собирают фильтрованием, промывают и сушат. Полученные микрокапсулы представляют собой частицы серо-желтого цвета размером от 10 до 200 мкм в зависимости от реологических параметров технологической смеси.
Изобретение иллюстрируется конкретными примерами, которые изложены ниже.
Для изготовления микрокапсул взята культура лиофилизированных лактобактерий штамма L.fermentum 90TS4, содержащая 10 8 живых клеток в 1,0 грамме.
Готовят 100,0 г 50%-го водного раствора поливинилпирролидона, процесс осуществляют при постоянном перемешивании. Затем в указанном растворе в течение 30 минут диспергируют 10,0 г лиофилизированных лактобактерий до образования однородной устойчивой суспензии (температура процесса 4 o С). Параллельно при нагревании (водяная баня около 80 o С) готовят 30%-й водный раствор танина в количестве 140 мл до получения прозрачного раствора красно-коричневого цвета. Раствор охлаждают до 4 o С и через делительную воронку подают в рабочую суспензию со скоростью 1,8 мл/мин. Систему оставляют при постоянном перемешивании на 30 минут, а отвержденные микрокапсулы затем собирают фильтрованием, промывают и сушат. Полученные микрокапсулы представляют собой частицы серо-желтого цвета размером 50-150 мкм. Выход готовых микрокапсул составил 70,5%. Количество жизнеспособных лактобактерий определяли после разрушения полимерной оболочки микрокапсул в фосфатном буфере при рН 7,6-7,8 с последующим титрованием культуры и высевом лактобактерий на агаризованную среду МРС. В качестве контроля использовали стандартную культуру в аналогичных разведениях. Число жизнеспособных лактобактерий в данном примере составило 1,5•10 4 клеток в 1,0 грамме микрокапсул.
ПРИМЕР 2
Для изготовления микрокапсул взята культура лиофилизированных лактобактерий штамма L.fermentum 90TS4, содержащая 10 8 живых клеток в 1,0 грамме.
Готовят 120,0 г 40%-го водного раствора поливинилпирролидона, охлаждают до 4 o С, затем к этому раствору добавляют 10,0 г лиофилизированных лактобактерий и перемешивают до образования однородной устойчивой суспензии. Через 30 минут в эту систему тонкой струей подают 50 мл 10%-го водного раствора танина, охлажденного до 4 o С. Систему оставляют при постоянном перемешивании на 180 минут. По окончании перемешивания происходит осаждение отвержденных микрокапсул, их собирают фильтрованием, промывают и сушат. Полученные микрокапсулы представляют собой округлые частицы серо-желтого цвета размером 50-120 мкм. Выход микрокапсул составил 67,8%. Количество жизнеспособных лактобактерий определяли по методике, описанной выше. Число жизнеспособных лактобактерий при этом составило 4,5•10 4 клеток в 1,0 грамме микрокапсул.
ПРИМЕР 3
Для изготовления микрокапсул взята культура лиофилизированных лактобактерий штамма L.fermentum 90TS4, содержащая 10 живых клеток в 1,0 грамме.
Готовят 100,0 г 50%-го водного раствора поливинилпирролидона и охлаждают его до 4 o С. 5,0 г лиофилизированных лактобактерий смешивают с 5,0 г инертного защитного носителя полисахаридной структуры и затем в течение 30 минут диспергируют в растворе ПВП до образования однородной устойчивой суспензии. Далее в эту систему тонкой струей подают 50 мл 10%-го водного раствора танина, охлажденного до 4 o С. Систему оставляют при постоянном перемешивании на 60 минут. Отвержденные микрокапсулы собирают фильтрованием, промывают и сушат. Полученные микрокапсулы представляют собой сферические частицы серо-желтого цвета размером 10-150 мкм. Выход составил 75,9%. Количество жизнеспособных лактобактерий определяли по методике, описанной выше. Число жизнеспособных лактобактерий при этом составило 5,3•10 4 клеток в 1,0 грамме микрокапсул.
ПРИМЕР 4
Для изготовления микрокапсул взята культура лиофилизированных лактобактерий штамма L.fermentum 90TS4, содержащая 10 8 живых клеток в 1,0 грамме.
Готовят 75,0 г 30%-го водного раствора поливинилпирролидона, охлаждают его 4 o С. В полученном растворе в течение 30 минут диспергируют 5,0 г лиофилизированных лактобактерий до образования однородной устойчивой суспензии. Затем в эту систему через делительную воронку подают 70 мл 30%-го водного раствора танина, охлажденного до 4 o С со скоростью 1,8 мл/мин. Систему оставляют при постоянном перемешивании на 180 минут, после чего отвержденные микрокапсулы собирают фильтрованием, промывают и сушат. Полученные микрокапсулы представляют собой округлые частицы серо-желтого цвета размером 80-200 мкм. Выход готовых микрокапсул составил 64,7%. Количество жизнеспособных лактобактерий определяли по методике, описанной выше. Число жизнеспособных лактобактерий при этом составило 3,7•10 4 клеток в 1,0 грамме микрокапсул.
Похожие патенты RU2220716C1
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ФОРМ ЛАКТОБАКТЕРИЙ | 2000 |
| RU2171672C1 |
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ С БИФИДОБАКТЕРИЯМИ | 2017 |
| RU2650645C1 |
Способ микрокапсуляции энзимспорина | 2018 |
| RU2689164C1 |
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННОЙ ФОРМЫ КОРЕВОЙ ВАКЦИНЫ ДЛЯ ПЕРОРАЛЬНОГО ПРИМЕНЕНИЯ | 2001 |
| RU2210361C2 |
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ПРЕПАРАТА «ЭНЗИМСПОРИН» В ПРОЦЕССЕ МИКРОКАПСУЛЯЦИИ | 2020 |
| RU2736377C2 |
СПОСОБ ПОЛУЧЕНИЯ АНТИАДГЕЗИВНОГО КОМПОНЕНТА НА ОСНОВЕ ЛЕКТИНСВЯЗЫВАЮЩИХ СТРУКТУР | 2008 |
| RU2367686C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНЫХ БИОЛОГИЧЕСКИ АКТИВНЫХ МАТЕРИАЛОВ | 2009 |
| RU2440105C2 |
Способ получения биопрепаратов живых микроорганизмов с продленным сроком сохранения высокого титра жизнеспособных клеток | 2020 |
| RU2751360C1 |
МИКРОКАПСУЛЫ, СОДЕРЖАЩИЕ ЖИВЫЕ МИКРООРГАНИЗМЫ, И ИХ ПРИМЕНЕНИЕ | 2017 |
| RU2652277C1 |
ВИРОЦИДНЫЙ, БАКТЕРИЦИДНЫЙ И СПЕРМАТОЦИДНЫЙ СУППОЗИТОРИЙ | 1994 |
| RU2147431C1 |
Иллюстрации к изобретению RU 2 220 716 C1
Реферат патента 2004 года СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ, СОДЕРЖАЩИХ ЖИВЫЕ МИКРООРГАНИЗМЫ
Изобретение относится к медицине. Способ состоит в том, что лиофилизированную культуру лактобактерий покрывают оболочкой, которая содержит поливинилпирролидон, дубленный танином. В результате технологического процесса происходит формирование агрегатов макромолекул пленкообразователя. Способ обеспечивает лучшую выживаемость микроорганизмов в ходе технологического процесса за счет использования безопасных для макроорганизма и микроорганизмов ингредиентов. Микрокапсулированные лактобактерии могут быть затем помещены в различные лекарственные формы и использованы в комплексе с другими препаратами. 1 табл.
Формула изобретения RU 2 220 716 C1
Способ получения микрокапсул, содержащих живые микроорганизмы, на основе поливинилпирролидона, отличающийся тем, что лиофилизированную культуру микроорганизмов диспергируют в 30-50% водном растворе поливинилпирролидона в соотношении 1:10 — 1:15 по массе при перемешивании до образования устойчивой взвеси, прибавляют 10-30% водный раствор танина, смесь перемешивают до формирования микрокапсул.
Источник
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ Российский патент 2016 года по МПК A61K31/65 A61K31/4164 A61K31/4184 A61K31/345 A61K47/36 A61K9/50 A61J3/07
Описание патента на изобретение RU2582274C1
Изобретение относится к области получения микрокапсул малорастворимых в воде лекарственных препаратов с целью перевода их в форму, способную образовывать устойчивые водные дисперсии.
Известен способ получения микрокапсул пестицидов методом осаждения нерастворителем (патент RU 2488437, 2012), где в качестве материала оболочки используется натрийкарбоксиметилцеллюлоза. Недостатками являются низкие выходы и использование бутанола, который в дальнейшем необходимо удалять из готового продукта.
Известен способ получения микрокапсул коревой вакцины (патент RU 2210361, 2003) с использованием в качестве оболочки микрокапсул, в том числе альгината натрия. Недостатком является техническая сложность выполнения способа.
Известен способ получения микрокапсул (патент RU 2107542, 1998), в котором эмульгирование материала ядра проводят в растворе модифицированного желатина с последующим его осаждением на поверхности капель эмульсии с формированием оболочек. К недостаткам способа можно отнести техническую сложность процесса, т.к. необходимо использовать распылительную сушку, а также использование органических компонентов, которые в дальнейшем необходимо удалять из продукта.
Наиболее близким по технической сущности к предлагаемому методу является способ получения микрокапсул (патент RU 2316390, 2008) в котором для формирования оболочки использовалась метилцеллюлоза с содержанием метоксильных групп от 27,5 до 32%. Недостатком является необходимость использования метилцеллюлозы со строго определенным содержанием метоксильных групп, длительность процесса и точное соблюдение температурного режима, что ведет к его усложнению.
Цель изобретения — упрощение и ускорение процесса получения микрокапсул малорастворимых в воде лекарственных препаратов в оболочках из водорастворимых биодеградируемых полимеров с заданным набором свойств.
Технический результат достигается тем, что в известном способе получения микрокапсул лекарственных препаратов путем диспергирования капсулируемого вещества в растворе полимера и осаждения полимера на поверхности частиц дисперсии, согласно изобретению в качестве капсулируемого вещества используют лекарственный препарат, выбранный из фурацилина, тетрациклина, дибазола и метронидазола, в качестве раствора полимера — 1,0% раствор альгината натрия в воде или 0,5% раствор гуаровой камеди в воде, а в качестве диспергатора — неионогенное поверхностно-активное вещество (ПАВ), представляющее собой оксиэтилированный спирт (ОС-20), при этом раствор указанного препарата в диметилформамиде диспергируют в растворе указанного полимера, осаждение осуществляют при температуре 3-5°C избытком ацетона или этанола, в полтора раза превышающим объем раствора полимера. Диспергирование реакционной смеси осуществляют с использованием ультразвукового диспергатора.
Выбор полимеров обусловлен широким использованием альгината натрия и гуаровой камеди, например, в медицине (в качестве антацида), пищевой промышленности (загустители) и в косметологии. Применение альгината натрия основано на его способности образовывать гели, желеобразные вещества, а также он широко применяется как оболочка для микрокапсулирования. Гуаровая камедь (или гуаран) помимо использования в пищевой промышленности в качестве стабилизатора, загустителя и структуратора обладает биологическим действием как физиологическое слабительное, нормализующее кишечную проницаемость и кишечную микрофлору, как детоксифицирующее и снижающее уровень холестерина средство, а также как средство, тормозящее развитие атеросклероза и ожирения.
Используемые в качестве капсулируемых лекарственных препаратов вещества: фурацилин, тетрациклин, дибазол и метронидазол относятся к различным классам химических соединений и обладают различным фармакологическим действием. Среди них — антибиотики широкого спектра действия, антибактериальные, спазмолитические, имуномоделирующие, антипротозойные средства. Указанные лекарственные средства очень мало растворимы в воде, лучше растворимы в этаноле и некоторых других органических растворителях, чувствительны к свету. Поэтому их капсулирование в водорастворимые полимеры обеспечит им защиту от негативного влияния окружающей среды, а также придаст этим препаратам способность образовывать в воде устойчивые дисперсии.
Применение в качестве ПАВ оксиэтилированного спирта ОС-20 позволит стабилизировать образующуюся дисперсию, предотвратить слипание микрокапсул и облегчить процесс выделения микрокапсул.
Используемые в качестве осадителя полимеров этанол и ацетон легко удаляются из микрокапсулированного продукта уже на стадии фильтрования и далее в процессе высушивания, так как обладают достаточно низкими температурами кипения.
Работа при температурах 3-5°C обеспечивает максимально полное осаждение формирующейся дисперсии микрокапсул. Использование полуторного избытка осадителя (ацетона или этанола) позволяет полимеру полностью перейти из водного раствора в твердую фазу и закрепиться на поверхности капсулируемого вещества.
Применение ультразвукового диспергатора «ULTRASONIK GENERATOR IL10 — 0,63» вместо магнитной мешалки для диспергирования реакционной системы при капсулировании в гуаровую камедь позволяет значительно сократить время проведения процесса (в 2-3 раза) и уменьшить размеры образующихся микрокапсул.
Способ осуществляется следующим образом.
К 0,5-1% водному раствору полимера при непрерывном перемешивании добавляют раствор капсулируемого вещества. Количество полимера и вещества варьируется в соответствии с поставленной задачей. Диспергирование системы осуществляют с помощью ультразвукового диспергатора «ULTRASONIK GENERATOR IL10 — 0,63». Процесс ведут в присутствии поверхностно-активного вещества, взятого в количестве 1-1,5% масс. от массы капсулируемого вещества. Таким образом, методом переосаждения получают тонкую дисперсию капсулируемого вещества в водном растворе полимера. Не останавливая диспергирование и постоянно охлаждая реактор, в реакционную смесь по каплям приливают осадитель — этиловый спирт или ацетон. По окончании осаждения полимера сформировавшиеся капсулы отфильтровывают на фильтре Шота (ВФ-1-40 пор. 16), промывают спиртом или ацетоном, сушат на воздухе или в сушильном шкафу.
Количественный анализ микрокапсул осуществлялся методом градуировочного графика на спектрометре УФ/видимой области спектра UV — 1800 (фирмы «Shimadzu») в интервале длин волн 500-190 нм в кювете с длиной светопоглощающего слоя 1 см, в интервале оптической плотности 0,0÷3,5.
Параллельно количественный анализ микрокапсулированных продуктов проводили методом ВЭЖХ с масс- и УФ-детекторами на хроматографе Waters MSD SQD — ESI (офВЭЖХ; детекторы: спектрофотометрический, 220 нм, масс-спектрометрический, ESI, 95-700 Da, source t — 140°, desolvataion t — 400°, cone 40V, capillare 3kV; колонка Acquity ВЕН C18 2.1 mm×50 mm*1.7 um; подвижная фаза: вода (0,1% муравьиная кислота) — ацетонитрил (0,1% муравьиная кислота); режим элюирования — градиентный: 0,4 мл/мин).
Структура полученных продуктов подтверждалась методом инфракрасной спектроскопии с использованием РЖ-Фурье спектрометра типа IR-200, оснащенного приставкой нарушенного полного внутреннего отражения (HUBO). ИК НПВО использовали для регистрации спектров поверхности полученных микрокапсул (фиг. 2, 3). ИК-спектры капсулируемых веществ снимали в таблетке KBr (фиг. 1).
Анализ полученных данных показал, что конфигурация и расположение основных полос поглощения в спектрах, приведенных на фиг. 1, 2, совпадают с аналогичными параметрами библиотечных спектров альгината натрия (фиг. 2) и гуаровой камеди (фиг. 3). При этом в спектрах поверхности микрокапсул отсутствуют полосы поглощения, характерные для исходных веществ, например в областях 1705, 1580 см -1 для фурацилина (фиг. 1). Указанный факт свидетельствует о том, что вещество преимущественно сосредоточено внутри капсулы и отсутствует в поверхностном слое.
Размер полученных капсул подтверждался методом электронной микроскопии при помощи сканирующего электронного микроскопа «QUANTA FEG 650» (фиг. 4).
Размер микрокапсул фурацилина в альгинате натрия колеблется от 1,5 до 6 мкм, в гуаровой камеди — от 50 до 260 мкм. Размер микрокапсул тетрациклина в альгинате натрия составляет 2,5÷7 мкм, в гуаровой камеди — 55÷260 мкм. Размер микрокапсул дибазола в альгинате натрия составляет 1,5÷5,5 мкм, в гуаровой камеди — 45÷220 мкм. Размер микрокапсул метронидазола в альгинате натрия составляет 1,5÷6,0 мкм, в гуаровой камеди — 50÷240 мкм.
Способ иллюстрируется следующими примерами.
Пример 1. Получение микрокапсул фурацилина в оболочке из альгината натрия. В реактор, снабженный мешалкой, вносят 50 мл 1%-ного раствора альгината натрия и 1 мл 1%-ного раствора поверхностно-активного вещества (ОС-20). Включают перемешивание. Не останавливая перемешивание, в реактор медленно вносят 0,5 г фурацилина, растворенного в 2-3 мл диметилформамида, и раствор аммиака до pH 8-9. К полученной суспензии при непрерывном перемешивании по каплям приливают 60 мл ацетона в качестве осадителя полимера. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта (кл. пор 16), промывают ацетоном, сушат на воздухе или в сушильном шкафу. Выход — 76%.
Структура выделенных продуктов подтверждалась методом инфракрасной спектроскопии с использованием ИК-Фурье спектрометра типа IR-200, оснащенного приставкой нарушенного полного внутреннего отражения (НПВО) (фиг. 2-3).
Размер полученных капсул подтверждался методом электронной микроскопии при помощи сканирующего электронного микроскопа «QUANTA FEG 650» (фиг. 4).
Пример 2. Получение микрокапсул тетрациклина в оболочке из альгината натрия. В реактор, снабженный мешалкой, вносят 50 мл 1%-ного раствора альгината натрия и 1 мл 1%-ного раствора поверхностно-активного вещества (ОС-20). Включают перемешивание. Не останавливая перемешивание, в реактор медленно вносят 0,5 г тетрациклина, растворенного в 2-3 мл диметилформамида. К полученной суспензии при непрерывном перемешивании по каплям приливают 60 мл ацетона в качестве осадителя полимера. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта (кл. пор 16), промывают ацетоном, сушат на воздухе или в сушильном шкафу. Выход — 77,5%.
Пример 3. Получение микрокапсул дибазола и метронидазола. В качестве капсулируемых лекарственных веществ используют дибазол и метронидазол. Выходы 71,7% и 48% соответственно. Способ осуществляют, как в примере 2.
Пример 4. Получение микрокапсул фурацилина в оболочке из гуаровой камеди.
В реактор, снабженный мешалкой, вносят 100 мл 0,5%-ного раствора гуаровой камеди и 1 мл 1%-ного раствора поверхностно-активного вещества (ОС-20). Включают перемешивание. Не останавливая перемешивание, в реактор медленно вносят 0,5 г фурацилина, растворенного в 2-3 мл диметилформамида, и раствор аммиака до pH 8-9. К полученной суспензии при непрерывном перемешивании по каплям приливают 60 мл ацетона в качестве осадителя полимера. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта (кл. пор 16), промывают ацетоном, сушат на воздухе или в сушильном шкафу. Выход — 73,5%.
Пример 5. Получение микрокапсул тетрациклина, дибазола и метронидазола. В качестве капсулируемых веществ используют тетрациклин, дибазол и метронидазол. Выходы 78%, 72% и 58,5% соответственно. Способ осуществляют, как в примере 4.
Пример 6. В качестве осадителя полимера и растворителя для промывки микрокапсул используется этиловый спирт. Способ осуществляют, как в примерах 1-5.
Заключение малорастворимых в воде веществ в оболочку из водорастворимых полимеров приводит к получению продуктов, способных образовывать водные суспензии, устойчивые в большей или меньшей степени. Особенно это актуально в отношении малорастворимых в воде лекарственных субстанций. Придание же указанным соединениям способности растворяться в воде позволит повысить их биодоступность и облегчит способ их применения. Фурацилин, тетрациклин, дибазол и метронидазол, закапсулированные в оболочку из альгината натрия или гуаровой камеди, значительно более устойчивы к действию факторов окружающей среды, а приобретенная ими способность образовывать устойчивые нанодисперсные суспензии, визуально не отличающиеся от истинных растворов, может служить источником для создания новых лекарственных форм.
Похожие патенты RU2582274C1
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ФАРМАЦЕВТИЧЕСКИХ ЛЕКАРСТВЕННЫХ ФОРМ НА ОСНОВЕ СОПОЛИМЕРОВ МЕТИЛМЕТАКРИЛАТА | 2020 |
| RU2747401C1 |
Способ повышения антибактериальной активности фурацилина in vitro | 2017 |
| RU2697056C2 |
СПОСОБ ПОВЫШЕНИЯ АНТИБАКТЕРИАЛЬНОЙ АКТИВНОСТИ ФУРАЦИЛИНА IN VITRO | 2020 |
| RU2734245C1 |
Способ получения нанокапсул метронидазола в гуаровой камеди | 2018 |
| RU2669353C1 |
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ ГРУППЫ ЦЕФАЛОСПОРИНОВ В КОНЖАКОВОЙ КАМЕДИ В ХЛОРОФОРМЕ | 2012 |
| RU2491939C1 |
Способ получения нанокапсул метронидазола в альгинате натрия | 2015 |
| RU2611368C1 |
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ ГРУППЫ ЦЕФАЛОСПОРИНОВ В КОНЖАКОВОЙ КАМЕДИ В АЦЕТОНЕ | 2012 |
| RU2523400C2 |
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ ГРУППЫ ЦЕФАЛОСПОРИНОВ В КОНЖАКОВОЙ КАМЕДИ В ЧЕТЫРЕХХЛОРИСТОМ УГЛЕРОДЕ | 2012 |
| RU2502510C1 |
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ ГРУППЫ ЦЕФАЛОСПОРИНОВ В КОНЖАКОВОЙ КАМЕДИ | 2012 |
| RU2514113C2 |
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ ГРУППЫ ЦЕФАЛОСПОРИНОВ В КОНЖАКОВОЙ КАМЕДИ В ГЕПТАНЕ | 2012 |
| RU2542511C2 |
Иллюстрации к изобретению RU 2 582 274 C1
Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ
Изобретение относится к области фармацевтики. Описан способ получения микрокапсул лекарственных препаратов путем диспергирования капсулируемого вещества в растворе полимера и осаждения полимера на поверхности частиц дисперсии. В качестве капсулируемого вещества используют лекарственный препарат, выбранный из фурацилина, тетрациклина, дибазола и метронидазола. В качестве раствора полимера — 1,0% раствор альгината натрия в воде или 0,5% раствор гуаровой камеди в воде. В качестве диспергатора — неионогенное поверхностно-активное вещество, представляющее собой оксиэтилированный спирт (ОС-20). При этом раствор указанного препарата в диметилформамиде диспергируют в растворе указанного полимера, осаждение осуществляют при температуре 3-5°C избытком ацетона или этанола, в полтора раза превышающим объем раствора полимера. Изобретение обеспечивает упрощение и ускорение процесса получения микрокапсул малорастворимых в воде лекарственных препаратов. 1 з.п. ф-лы, 5 пр., 4 ил.
Формула изобретения RU 2 582 274 C1
1. Способ получения микрокапсул лекарственных препаратов путем диспергирования капсулируемого вещества в растворе полимера и осаждения полимера на поверхности частиц дисперсии, отличающийся тем, что в качестве капсулируемого вещества используют лекарственный препарат, выбранный из фурацилина, тетрациклина, дибазола и метронидазола, в качестве раствора полимера — 1,0% раствор альгината натрия в воде или 0,5% раствор гуаровой камеди в воде, а в качестве диспергатора — неионогенное поверхностно-активное вещество (ПАВ), представляющее собой оксиэтилированный спирт (ОС-20), при этом раствор указанного препарата в диметилформамиде диспергируют в растворе указанного полимера, осаждение осуществляют при температуре 3-5°C избытком ацетона или этанола, в полтора раза превышающим объем раствора полимера.
2. Способ по п. 1, отличающийся тем, что диспергирование реакционной смеси осуществляют с использованием ультразвукового диспергатора.
Источник