Способ получения металла электролитическим способом

Содержание
  1. 7.4.5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ И РАФИНИРОВАНИЕ МЕТАЛЛОВ
  2. Читайте также
  3. ОБОГРЕВ ЖИЛИЩ И ПОЛУЧЕНИЕ ЭНЕРГИИ ИЗ ОТХОДОВ
  4. БИЧ МЕТАЛЛОВ
  5. 1. Строение металлов
  6. 4.6.1. Краткосрочная перспектива, быстрое получение прибыли
  7. 9.2. Получение Технических условий и Разрешения на присоединение мощности
  8. 4.4.2. Получение озона
  9. Глава 2 ПОЛУЧЕНИЕ ТЕХНИЧЕСКИХ УСЛОВИЙ И/ИЛИ РАЗРЕШЕНИЯ НА ПРИСОЕДИНЕНИЕ МОЩНОСТИ
  10. Глава 5 ПОЛУЧЕНИЕ АКТА ДОПУСКА ЭЛЕКТРОУСТАНОВКИ В ЭКСПЛУАТАЦИЮ
  11. 4.16. Химическое окрашивание металлов
  12. 5.2.4. Получение оттисков
  13. 7.4.2. ЭЛЕКТРОЛИТИЧЕСКОЕ РАЗЛОЖЕНИЕ (ЭЛЕКТРОЛИЗ) ВОДЫ
  14. 7.4.3. ПОЛУЧЕНИЕ ХЛОРА И ЩЕЛОЧИ
  15. 7.4.4. ЭЛЕКТРОХИМИЧЕСКОЕ ПОЛУЧЕНИЕ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ
  16. 9.2.8 Архивирование и получение документов. Выпуск версии
  17. Понятие о металлургии: общие способы получения металлов
  18. 1. Нахождение металлов в природе
  19. 2. Получение активных металлов
  20. 3. Получение малоактивных и неактивных металлов
  21. 3.1. Обжиг сульфидов
  22. 3.2. Восстановление металлов углем
  23. 3.3. Восстановление металлов угарным газом
  24. 3.4. Восстановление металлов более активными металлами
  25. 3.5. Восстановление металлов из оксидов водородом
  26. 4. Производство чугуна
  27. Добавить комментарий Отменить ответ

7.4.5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ И РАФИНИРОВАНИЕ МЕТАЛЛОВ

7.4.5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ И РАФИНИРОВАНИЕ МЕТАЛЛОВ

Электроосаждение металла на катоде лежит в основе электрохимического получения металлов из растворов (гидроэлектрометаллургия) или из расплавов, а также рафинирования (очистки) металлов.

Металлы, имеющие электроположительные значения потенциала, например серебро Ag, золото Au, не растворяются и выпадают в виде частиц на дно электролизера (в шлам) из перешедших в раствор ионов. На катоде в первую очередь осаждаются металлы, имеющие электроположительные значения потенциала (основной металл, например медь). В результате электролиза очищаемый анодный металл растворяется и основной металл осаждается на катоде. Примеси, потенциал которых отрицательнее потенциала основного металла, остаются в растворе, а электроположительные (по потенциалу) примеси оказываются в шламе.

Важным шагом к открытию электролитического рафинирования было предложение Б.С. Якоби в 1840 г. использовать в гальванопластике растворимые аноды. В 1847 г. герцог М. Лейхтенбергский (Россия) высказал предположение о возможности электролитической очистки и разделения металлов. Практически применять электролитическое рафинирование меди стал Д.Р. Элькингтон в Америке с 1865 г. Промышленное производство возникло в Германии в 1878 г. В России производство рафинированной меди было организовано в начале 90-х годов XIX в. на Кавказе (г. Келакент) и в Нижнем Новгороде.

В это же время началось электролитическое получение меди как заключительная стадия гидрометаллургического производства. При осаждении меди из растворов ее солей, полученных путем переработки руд, используются нерастворимые аноды.

Электрохимический метод применяется для рафинирования и очистки многих металлов (около 80% выпускаемого никеля и значительная часть кобальта). При этом получается металл чистотой 99,99% (никель) и 99,6% (кобальт). При повторном рафинировании чистота металла повышается до 99,9999%. Электролитическое рафинирование применяется также для получения чистого серебра (99,99%) и золота (99,95%).

В 80-х годах XIX в. началась разработка электролитического метода получения цинка, а в 1909 г. в Германии его крупномасштабное производство. В России исследование электролиза цинка проводилось с 1909 г., а первая установка для получения цинка была запущена в 1925 г.

Исследования, проведенные еще в начале XX в. в России под руководством П.П. Федотьева, а затем в СССР под руководством Р.И. Агладзе, привели к организации производства чистого марганца гидроэлектрометаллургическим методом в конце 30-х годов. Под руководством Н.Т. Кудрявцева и А.В. Помосова в 60-х годах разработан электрохимический способ получения порошков металлов (меди, серебра, железа, никеля, цинка и свинца).

Электролизом расплавов производят алюминий, магний, щелочные металлы, кальций, бериллий, титан, цирконий, тантал, бор и фтор. Впервые в 1807 г. X. Дэви и С.П. Власовым электролизом был получен калий и натрий. В 1890 г. К. Кестнер (Германия) разработал промышленный способ получения натрия электролизом расплава NaOH. В этом случае на катоде выделяется натрий, а на аноде кислород и вода. В 1924 г. Г. Дауне (США) предложил проводить электролиз расплава NaCl — СаС1 2, позднее был разработан промышленный способ получения натрия электролизом расплава хлоридов. Этот способ используется до сих пор.

В 1887 г. П.Л.Т. Эру (Франция) и Ч. Холл (США) предложили способ получения алюминия путем электролиза расплава глинозема в криолите. Анодами в электролизере служил графит, окисляющийся при проведении процесса. В России исследования электролитического метода получения алюминия проводились под руководством П.П. Федотьева, А.И. Беляева, Ю.В. Баймакова, П.Ф. Антипина и др. Первый завод по производству алюминия в СССР был сдан в эксплуатацию в г. Волхове в 1930 г. Полученный на катоде алюминий обычно подвергают электролитическому рафинированию с получением алюминия чистотой 99,95–99,995%.

Читайте также:  Система уравнений для 9 класса графический способ решения

В 1886 г. А. Муассаном (Франция) был получен фтор электролизом смеси HF — KF с использованием платиновых электродов. Промышленное производство фтора началось в 40-х годах XX в. Процесс проводят либо при температуре 100°С в расплаве HF?2KF, либо при температуре 250 °С в расплаве HF?KF.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

ОБОГРЕВ ЖИЛИЩ И ПОЛУЧЕНИЕ ЭНЕРГИИ ИЗ ОТХОДОВ

ОБОГРЕВ ЖИЛИЩ И ПОЛУЧЕНИЕ ЭНЕРГИИ ИЗ ОТХОДОВ Уже на первых заводах по сжиганию мусора часть пара шла на производство электроэнергии. В парижском регионе муниципальные службы по очистке улиц и контролю водных ресурсов для этой цели покупали вырабатываемый при сжигании

БИЧ МЕТАЛЛОВ

БИЧ МЕТАЛЛОВ В мире нет ничего вечного — эту нехитрую истину все знают давно. То, что кажется навеки незыблемым — горы, гранитные глыбы, целые материки, — со временем разрушаются, рассыпаются в пыль, уходят под воду, проваливаются в глубины. Исчезают целые культуры, народы

1. Строение металлов

1. Строение металлов Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот. Для того чтобы

4.6.1. Краткосрочная перспектива, быстрое получение прибыли

4.6.1. Краткосрочная перспектива, быстрое получение прибыли • Изготовление инструментов и некоторых новых материалов (порошки, композиты) на основе нанотехнологий. Некоторые компании организовали такие производства и уже становятся доходными.• Производство одномерных

9.2. Получение Технических условий и Разрешения на присоединение мощности

9.2. Получение Технических условий и Разрешения на присоединение мощности Данный этап оформления договора энергоснабжения регламентируется (для нашего примера) требованиями Службы присоединения и перспективного развития (СПиПР) ОАО «Московская городская

4.4.2. Получение озона

4.4.2. Получение озона Озон (O3) – газ голубоватого или бледно-фиолетового цвета, самопроизвольно распадающийся на воздухе и в водном растворе, превращаясь в обычный кислород (О2). Скорость распада озона резко увеличивается в щелочной среде и с ростом температуры. Доза озона

Глава 2 ПОЛУЧЕНИЕ ТЕХНИЧЕСКИХ УСЛОВИЙ И/ИЛИ РАЗРЕШЕНИЯ НА ПРИСОЕДИНЕНИЕ МОЩНОСТИ

Глава 2 ПОЛУЧЕНИЕ ТЕХНИЧЕСКИХ УСЛОВИЙ И/ИЛИ РАЗРЕШЕНИЯ НА ПРИСОЕДИНЕНИЕ МОЩНОСТИ Вопрос 39. Кто имеет право на технологическое присоединение своих энергопринимающих устройств (энергетических установок) к электрическим сетям?Ответ. В соответствии с ФЗ «Об

Глава 5 ПОЛУЧЕНИЕ АКТА ДОПУСКА ЭЛЕКТРОУСТАНОВКИ В ЭКСПЛУАТАЦИЮ

Глава 5 ПОЛУЧЕНИЕ АКТА ДОПУСКА ЭЛЕКТРОУСТАНОВКИ В ЭКСПЛУАТАЦИЮ Вопрос 183. В каких сферах электроэнергетики осуществляется деятельность органов Ростехнадзора?Ответ. Практически ни одна сфера деятельности в электроэнергетике не обходится без контроля со стороны органов

4.16. Химическое окрашивание металлов

4.16. Химическое окрашивание металлов Старинные рецепты. (См. «Наука и жизнь», № 9, 1980).Применяя из старинных журналов некоторые рецепты окрашивания металлов, предупреждаем сразу тех, кто пожелает воспользоваться при работе с такими едкими и ядовитыми веществами, как

5.2.4. Получение оттисков

5.2.4. Получение оттисков Чтобы матрица не смещалась во время работы, ее закрепляют на торце кряжа в вырезанном заранее углублении. Тонкий отожженный лист поместите между матрицей и пуансоном и, ударяя сверху равномерно киянкой, добейтесь, чтобы пуансон плотно вошел в

7.4.2. ЭЛЕКТРОЛИТИЧЕСКОЕ РАЗЛОЖЕНИЕ (ЭЛЕКТРОЛИЗ) ВОДЫ

7.4.2. ЭЛЕКТРОЛИТИЧЕСКОЕ РАЗЛОЖЕНИЕ (ЭЛЕКТРОЛИЗ) ВОДЫ Всесторонние исследования электролиза воды провели русские ученые В.В. Петров (1802 г.), Ф.Ф. Рейс (1803 г.) и Ф. Гротгус (1805 г.).Промышленный электролизер для получения водорода и кислорода впервые в мире был сконструирован в

7.4.3. ПОЛУЧЕНИЕ ХЛОРА И ЩЕЛОЧИ

7.4.3. ПОЛУЧЕНИЕ ХЛОРА И ЩЕЛОЧИ Если через электролизер с раствором хлорида натрия пропускать электрический ток, то на положительном электроде (аноде) будет выделяться хлор, а на отрицательном (катоде) — водород. При этом около катода накапливается щелочь NaOH. Первый патент

Читайте также:  Способы укладки тротуарной плитки ромб

7.4.4. ЭЛЕКТРОХИМИЧЕСКОЕ ПОЛУЧЕНИЕ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

7.4.4. ЭЛЕКТРОХИМИЧЕСКОЕ ПОЛУЧЕНИЕ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ Электролизом получают гипохлорит, хлораты, перхлораты, персульфаты, пероксид водорода, перманганат калия, диоксид марганца и др.В 1882 г. А.П. Лидовым и В.А. Тихомировым был разработан электрохимический способ

9.2.8 Архивирование и получение документов. Выпуск версии

9.2.8 Архивирование и получение документов. Выпуск версии Цель работ по архивированию и получению документов — обеспечить получение связанных с программным средством документов жизненного цикла ПО, которые необходимы для копирования, повторной генерации, повторного

Источник

Понятие о металлургии: общие способы получения металлов

Понятие о металлургии: общие способы получения металлов

Металлургия — это наука о промышленных способах получения металлов. Различают черную и цветную металлургию.

Черная металлургия — это производство железа и его сплавов (сталь, чугун и др.).

Цветная металлургия — производство остальных металлов и их сплавов.

Широкое применение находят сплавы металлов. Наиболее распространенные сплавы железа — чугун и сталь.

Чугун — это сплав железа, в котором содержится 2-4 масс. % углерода, а также кремний, марганец и небольшие количества серы и фосфора.

Сталь — это сплав железа, в котором содержится 0,3-2 масс. % углерода и небольшие примеси других элементов.

Легированные стали — это сплавы железа с хромом, никелем, марганцем, кобальтом, ванадием, титаном и другими металлами. Добавление металлов придает стали дополнительные свойства. Так, добавление хрома придает сплаву прочность, а добавление никеля придает стали пластичность.

Основные стадии металлургических процессов:

  1. Обогащение природной руды (очистка, удаление примесей)
  2. Получение металла или его сплава.
  3. Механическая обработка металла

1. Нахождение металлов в природе

Большинство металлов встречаются в природе в виде соединений. Наиболее распространенный металл в земной коре — алюминий. Затем железо, кальций, натрий и другие металлы.

Нахождение металлов в природе
Активные металлы — в виде солей Металлов средней активности — в виде оксидов и сульфидов Малоактивные металлы -в виде простых веществ
Хлорид натрия NaCl

2. Получение активных металлов

Активные металлы (щелочные и щелочноземельные) классическими «химическими» методами получить из соединений нельзя. Такие металлы в виде ионов — очень слабые окислители, а в простом виде — очень сильные восстановители, поэтому их очень сложно восстановить из катионов в простые вещества. Чем активнее металл, тем сложнее его получить в чистом виде — ведь он стремится прореагировать с другими веществами.

Получить такие металлы можно, как правило, электролизом расплавов солей, либо вытеснением из солей другими металлами в жестких условиях.

Натрий в промышленности получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl = 2Na + Cl2

Калий получают пропусканием паров натрия через расплав хлорида калия при 800°С:

KCl + Na = K↑ + NaCl

Литий можно получить электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl = 2Cs + CaCl2

Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Барий получают из оксида восстановлением алюминием в вакууме при 1200 °C:

4BaO+ 2Al = 3Ba + Ba(AlO2)2

Алюминий получают электролизом раствора оксида алюминия Al2O3 в криолите Na3AlF6:

3. Получение малоактивных и неактивных металлов

Металлы малоактивные и неактивные восстанавливают из оксидов углем, оксидом углерода (II) СО или более активным металлом. Сульфиды металлов сначала обжигают.

3.1. Обжиг сульфидов

При обжиге сульфидов металлов образуются оксиды:

2ZnS + 3O2 → 2ZnO + 2SO2

Металлы получают дальнейшим восстановлением оксидов.

3.2. Восстановление металлов углем

Чистые металлы можно получить восстановлением из оксидов углем. При этом до металлов восстанавливаются только оксиды металлов, расположенных в ряду электрохимической активности после алюминия.

Например , железо получают восстановлением из оксида углем:

2Fe2O3 + 6C → 2Fe + 6CO

ZnO + C → Zn + CO

Оксиды металлов, расположенных в ряду электрохимической активности до алюминия, реагируют с углем с образованием карбидов металлов:

CaO + 3C → CaC2 + CO

3.3. Восстановление металлов угарным газом

Оксид углерода (II) реагирует с оксидами металлов, расположенных в ряду электрохимической активности после алюминия.

Например , железо можно получить восстановлением из оксида с помощью угарного газа:

3.4. Восстановление металлов более активными металлами

Более активные металлы вытесняют из оксидов менее активные. Активность металлов можно примерно оценить по электрохимическому ряду металлов:

Восстановление металлов из оксидов другими металлами — распространенный способ получения металлов. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al = Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO

Железо можно вытеснить из оксида с помощью алюминия:

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

Активные металлы вытесняют менее активные из растворов их солей.

Например , при добавлении меди (Cu) в раствор соли менее активного металла – серебра (AgNO3) произойдет химическая реакция:

2AgNO3 + Cu = Cu(NO3)2 + 2Ag

Медь покроется белыми кристаллами серебра.

При добавлении железа (Fe) в раствор соли меди (CuSO4) на железном гвозде появился розовый налет металлической меди:

CuSO4 + Fe = FeSO4 + Cu

При добавлении цинка в раствор нитрата свинца (II) на цинке образуется слой металлического свинца:

3.5. Восстановление металлов из оксидов водородом

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Как правило, взаимодействие оксидов металлов с водородом протекает в жестких условиях – под давлением или при нагревании.

CuO + H2 = Cu + H2O

4. Производство чугуна

Чугун получают из железной руды в доменных печах.

Печь последовательно загружают сверху шихтой, флюсами, коксом, затем снова рудой, коксом и т.д.

1- загрузочное устройство, 2 — колошник, 3 — шахта, 4 — распар, 5 — горн, 6 — регенератор

Доменная печь имеет форму двух усеченных конусов, соединенных основаниями. Верхняя часть доменной печи — колошник, средняя — шахта, а нижняя часть — распар.

В нижней части печи находится горн. Внизу горна скапливается чугун и шлак и отверстия, через которые чугун и шлак покидают горн: чугун через нижнее, а шлак через верхнее.

Наверху печи расположено автоматическое загрузочное устройство. Оно состоит из двух воронок, соединенных друг с другом. Руда и кокс сначала поступают в верхнюю воронку, а затем в нижнюю.

Из нижней воронки руда и кокс поступают в печь. во время загрузки руды и кокса печь остается закрытой, поэтому газы не попадают в атмосферу, а попадают в регенераторы. В регенераторах печной газ сгорает.

Шихта — это железная руда, смешанная с флюсами.

Снизу в печь вдувают нагретый воздух, обогащенный кислородом, кокс сгорает:

Образующийся углекислый газ поднимается вверх и окисляет кокс до оксида углерода (II):

CO2 + С = 2CO

Оксид углерода (II) (угарный газ) — это основной восстановитель железа из оксидов в данных процессах. Последовательность восстановления железа из оксида железа (III):

Последовательность восстановления оксида железа (III):

FeO + CO → Fe + CO2

Суммарное уравнение протекающих процессов:

При этом протекает также частичное восстановление примесей оксидов других элементов (кремния, марганца и др.). Эти вещества растворяются в жидком железе.

Чтобы удалить из железной руды тугоплавкие примеси (оксид кремния (IV) и др.). Для их удаления используют флюсы и плавни (как правило, известняк CaCO3 или доломит CaCO3·MgCO3). Флюсы разлагаются при нагревании:

и образуют с тугоплавкими примесями легкоплавкие вещества (шлаки), которые легко можно удалить из реакционной смеси:

CaO + SiO2 → CaSiO3

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Источник

Читайте также:  Реальный способ разблокировать айфон
Оцените статью
Разные способы