Получение фтора осуществляется путем электролиза фтористых соединений, причем фтор выделяется на аноде по схеме:
Электролитом обычно служит легкоплавкая смесь состава KF × 2HF. Процесс проводят при температурах около 100 °С в стальных электролизерах со стальными катодами (на которых выделяется водород) и угольными анодами.
Свободный фтор состоит из двухатомных молекул и представляет собой почти бесцветный (в толстых слоях зеленовато–желтый) газ, имеющий резкий запах. Он сгущается в желтоватую жидкость при –188 °С и затвердевает при –218 °С. Распад молекулы F2 на отдельные атомы осуществляется довольно легко (энергия диссоциации 38 ккал/моль).
С химической стороны фтор может быть охарактеризован как одновалентный металлоид и притом самый активный из всех металлоидов. Обусловлено это благоприятным сочетанием ряда факторов – непрочности молекулы F2 , сравнительно малых размеров атома фтора и тем, что он имеет большое сродство к электрону, т. е. энергично притягивает недостающий ему для заполнения внешнего слоя валентный электрон:
Это число –82 ккал/г–атом – и является количественным выражением сродства фтора к электрону.
Подавляющее большинство металлов соединяется с фтором уже при обычных условиях. Однако взаимодействие часто ограничивается образованием поверхностной пленки фтористого соединения, которая предохраняет металл от дальнейшего разъедания.
Так как фтористые производные металлоидных элементов обычно легколетучи, образование их не предохраняет поверхность металлоида от дальнейшего действия фтора. Поэтому взаимодействие с металлоидами часто протекает значительно энергичнее, чем со многими металлами. Например, фосфор и сера воспламеняются в газообразном фторе и сгорают по реакциям:
С азотом и кислородом фтор непосредственно не соединяется.
От водородных соединений других элементов фтор отнимает водород. Большинство окислов разлагается им с вытеснением кислорода, В частности, вода разлагается по схеме
причем вытесняемые атомы кислорода соединяются не только друг с другом, но отчасти также с молекулами воды и фтора. Поэтому, помимо газообразного кислорода, при этой реакции всегда образуются также перекись водорода и окись фтора (F2 O). Последняя представляет собой бесцветный газ, похожий по запаху на озон.
1) Окись фтора (иначе – фтористый кислород – OF2 ) может быть получена по реакции:
Она малорастворима в воде и почти не разлагается ею, но под действием сильных восстановителей разложение F2 O (т. пл. –224 °С, т. кип. –145 °С) идет довольно быстро. Окись фтора сильно ядовита.
Практическое использование фтора широко развилось за последние годы. Потребляется он главным образом для фторирования органических соединений (т. е. замены в них водорода на фтор). Процесс этот приобрел большое значение, так как многие фторорганические производные обладают ценными свойствами.
В отличие от свободного фтора, фтористый водород (HF) и многие его производные использовались уже с давних пор.
Непосредственное соединение фтора с водородом сопровождается очень большим выделением тепла:
Реакция протекает обычно со взрывом, который происходит даже при сильном охлаждении газов и в темноте. Практического значения для получения HF этот прямой синтез не имеет.
Техническое получение фтористого водорода основано на взаимодействии СаF2 с концентрированной H2 SO4 по реакции:
Процесс проводят в стальных печах при 120–300°С. Части установки, служащие для поглощения HF, делаются из свинца.
Фтористый водород представляет собой бесцветную легколетучую жидкость (т. пл. – 83°С. т. кип, +19,5 °С), смешивающуюся с водой в любых соотношениях. Он обладает резким запахом, дымит на воздухе (вследствие образования с парами воды мелких капелек раствора) и сильно раздражает дыхательные пути.
2) Связь Н–F характеризуется весьма высокой полярностью (0,45). Этим обусловлена резко выраженная склонность фтористого водорода к ассоциации путем образования водородных связей по схеме [···H···F···H···F···].
Энергия такой связи составляет около 7 ккал/г–атом, т. е. она несколько прочнее, чем водородная связь между молекулами воды.
Химические свойства HF существенно зависят от отсутствия или наличия воды. Сухой фтористый водород не действует на большинство металлов. Не реагирует он и с окислами металлов. Однако если реакция начнется, то дальше она некоторое время идет с самоускорением, так как в результате взаимодействия по схеме
Подобным же образом действует фтористый водород и на окислы некоторых металлоидов. Практически важно взаимодействие его с двуокисью кремния – SiO2 (песок, кварц), так как последняя входит в состав стекла. Реакция идет по схеме
Поэтому фтористый водород нельзя получать и сохранять в стеклянных сосудах. Обычно его растворы хранят в бутылях из искусственных пластмасс, на которые HF не действует.
На взаимодействии HF с SiO2 основано применение фтористого водорода для «травления» стекла. Вследствие удаления частичек SiO2 поверхность его становится матовой, чем пользуются для нанесения на стекло различных надписей и т.п.
3) Рассмотренные выше случаи взаимодействия сухого фтористого водорода с окислами металлов и металлоидов могут служить типичным примером аутокаталитических реакций, т. е. таких процессов, при которых катализатор (в данном случае – вода) не вводится в систему извне, а является одним из продуктов реакции. Как показывает рис. 95, скорость подобных процессов сначала, по мере увеличения в системе количества катализатора, нарастает до некоторого максимума, после чего начинает уменьшаться вследствие понижения концентраций реагирующих веществ.
В водном растворе HF ведет себя, как одноосновная кислота средней силы. Продажный раствор этой фтористоводородной (иначе, плавиковой) кислоты содержит обычно 40% HF.
Фтористоводородная кислота более или менее энергично реагирует с большинством металлов. Однако во многих случаях реакция протекает лишь на поверхности металла, после чего последний оказывается защищенным от дальнейшего действия кислоты слоем образовавшейся труднорастворимой соли. Так ведет себя, в частности, свинец, что и позволяет пользоваться им для изготовления частей устойчивой к действию HF аппаратуры.
4) Помимо электролитической диссоциации по уравнению HF H · + F · (K = 710 – 4 ), для плавиковой кислоты характерно равновесие: F’ + HF HF2 . Значение константы этого равновесия [HF’2 ]/[F’][HF] = 5 показывает, что в растворах HF содержится больше сложных анионов (FHF)’ [имеющих линейную структуру с d(FF) = 2,3 А], чем простых анионов F’.
Соли фтористоводородной кислоты носят название фтористых или фторидов. Большинство их трудно растворимо в воде – из производных обычных металлов хорошо растворяются лишь фториды Na, К, Ag, Al, Sn и Hg. Все соли плавиковой кислоты ядовиты. Сама она при попадании на кожу вызывает образование болезненных и трудно заживающих ожогов (особенно под ногтями). Поэтому работать с ней следует в резиновых перчатках.
Практическое применение плавиковой кислоты довольно разнообразно. Она используется в нефтяной промышленности (при синтезе высококачественных бензинов), для удаления песка с металлического литья, при анализах минералов и т. д. Широкое практическое применение находят также некоторые фториды, которые будут ближе рассмотрены при соответствующих элементах.
Источник
способ получения фтора
Классы МПК:
C25B1/24 галогенов или их соединений
Автор(ы):
Зусайлов Ю.Н.
Патентообладатель(и):
ГУП «Ангарский электролизный химический комбинат»
Приоритеты:
Изобретение относится к технологии получения фтора, а более конкретно к расплавам кислых фторидов калия, которые применяются в среднетемпературном способе электролиза фтора. Фтор получают путем электролиза на угольном аноде из расплава трифторида калия. Электролиз ведут с плотностью тока на аноде 0,4 А/см 2 при содержании фтористого водорода в электролите 39,2-40,4 вес.% и температуре электролита 106-112 o С. Технический эффект: решается задача оптимального содержания в электролите фтористого водорода при соответствующей температуре, что обеспечивает наибольшую ионную проводимость и уменьшает или исключает электронную проводимость расплава. 4 табл.
Формула изобретения
Способ получения фтора путем электролиза на угольном аноде из расплава трифторида калия, отличающийся тем, что электролиз ведут с плотностью тока на аноде 0,4 А/см 2 при содержании фтористого водорода в электролите 39,2-40,4 вес.% и температуре электролита 106-112 o С.
Описание изобретения к патенту
Изобретение относится к технологии получения фтора, а более конкретно к расплавам кислых фторидов калия, которые применяются в среднетемпературном способе электролиза фтора.
Известен среднетемпературный способ получения фтора, в котором в качестве электролита используются расплавы кислых фторидов калия, близкие по составу трифториду калия KF2HF. В расплаве трифторида калия присутствуют ионы калия, водорода, фтора и ион HF 2 — . В процессе электролиза на угольном аноде происходит разряд ионов фтора и HF 2 — с выделением элементарного фтора, а на катоде — ионов водорода с выделением водорода. Вследствие перенапряжения для реакции разряда ионов водорода не исключается возможность разряда на катоде ионов калия с выделением калия и выделением водорода в результате взаимодействия калия со фтористым водородом. Более вероятен механизм выделения водорода на катоде вследствие присоединения электрона к молекуле фтористого водорода [1, стр. 65].
Электропроводность расплавов при межэлектродном напряжении больше напряжения разложения электролита (в процессе электролиза) или меньше напряжения разложения электролита объясняется ионной проводимостью. Сообщается, что длительный электролиз не исключает протекание тока через фторную ячейку ниже напряжения разложения трифторидного расплава [1, стр.66].
Содержание фтористого водорода в расплаве и его температура для электролизеров разных фирм неодинаковы. Например, для электролизера на 1,5 кА (США): 37-40 вес. %; 95-115 o С; для электролизера на 2кА фирмы «Хукер»(США): 38-40 вес.%; 100-110 o С; для электролизера на 6 кА той же фирмы: 40-42 вес.%, 100 o С [1,стр. 100-106].
В патенте СССР 1303037 — Ватанабе, Армаки, Кита «Способ получения фтора» (1979) предлагается расплав с мольным отношением фтористого водорода и фторида калия в интервале 1,8-2,2 (38,2-43,1 вес.%). Интервал изменения температуры расплава не указан.
В патенте США 4602985 «Угольные электроды» (1986 г.) предлагается расплавленный электролит примерного состава KF2HF, без указания интервала содержания в расплаве фтористого водорода и интервала температуры расплава.
В качестве наиболее близкого аналога предполагаемого изобретения выбираем патент СССР 1303037 «Способ получения фтора», в котором предлагается расплав с содержанием фтористого водорода в интервале 38,2-43,1 вес.%.
К недостаткам применяемого для получения фтора электролита следует отнести: — большие интервалы изменения содержания фтористого водорода в электролите и неопределенность интервала изменения температуры электролита; — отсутствие данных по взаимному влиянию содержания фтористого водорода в электролите и его температуры на выход фтора по току.
Отклонение от стехиометрии трифторида калия и недостаточная температура электролита ведет: — к увеличению количества структурных дефектов, что способствует переходам электронов из валентной зоны в зону проводимости. Расплав в результате этого может приобретать полупроводниковые свойства, то есть некоторую электронную проводимость [2]; — к уменьшению выхода фтора по току. Увеличение температуры электролита в этом случае способствует увеличению выхода фтора по току, то есть уменьшению потерь электроэнергии за счет уменьшения электронной проводимости расплава электролита, что согласуется с поведением проводников 1-го рода.
Свойство некоторой электронной проводимости расплава кислых фторидов калия до настоящего времени не известно.
Для проведения процесса электролиза фтора с применением расплава электролита, близкого по составу трифториду калия, при плотности тока на аноде 0,4 А/см 2 предлагается использовать электролит с содержанием фтористого водорода в нем в интервале 39,2-40,4 вес.% при температуре электролита в интервале 106-112 o С.
Предполагаемым изобретением решается задача оптимального содержания в электролите фтористого водорода при соответствующей температуре, что обеспечивает наибольшую ионную проводимость и уменьшает или исключает электронную проводимость расплава.
ПРИМЕР Согласно теории квазикристаллической модели [2], расплав рассматривается как кристаллическая решетка, в которой сохраняется ближний порядок расположения частиц. При этом образуется столько вакансий, сколько соответствует увеличению объема при плавлении.
Известно, что при плавлении кислых фторидов калия объем вещества увеличивается.
В табл. 1 приведены величины электросопротивлений твердого кислого фторида калия с различным содержанием фтористого водорода в интервале 35-40 вес. %. Замеры проводились с использованием цифрового омвольтметра ВК-7-35, между анодной и катодной шинами электролизеров с замороженным электролитом, при комнатной температуре, при снятом напряжении с цепи электроснабжения электролизеров. Особенностью этих замеров является то, что они выполнялись при использовании стабилизированного тока напряжением 4В, что заложено в конструкцию прибора.
Из табл.1 видно, что электросопротивление кислых фторидов калия в твердом состоянии с уменьшением содержания фтористого водорода от 40 до 35 вес.% уменьшается на несколько порядков, при этом кислые фториды калия, находящиеся в твердом состоянии, переходят из разряда диэлектриков в полупроводники. Удельное электросопротивление полупроводниковых материалов изменяется, как известно [3, стр.289], в интервале от 10 -6 до 10 8 Ом/м.
Предполагается, что в ионном расплаве в какой-то степени сохраняются те же типы химической связи, которые существовали в твердом кристалле. Об этом же свидетельствуют близость значений плотностей, теплоемкостей твердых и расплавленных солей. При плавлении происходит рост дефектов в расплавленном кристалле, что способствует проявлению полупроводниковых свойств расплава.
В качестве иллюстрации проявления некоторой электронной проводимости расплава кислых фторидов калия в табл.2 приведены результаты статистической обработки ежегодных данных наработок газоразделительных колоколов серийных электролизеров на отказ по номеру электролизера в цепи электроснабжения (1984-1995гг. ). Электролизеры, включенные на положительный и отрицательный полюсы генератора постоянного тока, пронумерованы в порядке возрастания потенциала (по абсолютной величине).
Статистическая обработка проводилась по методу разрывной нелинейной регрессии и линейной регрессии. Использование линейной регрессии дало слабую корреляцию (коэффициент корреляции 0,22), в то время как методом нелинейной разрывной регрессии получены уравнения регрессии номера электролизера в цепи электроснабжения по наработке колокола на отказ с коэффициентами корреляции до 0,99.
Каждое уравнение ограничено номером электролизера, на котором происходит разрыв регрессии. Граничные наработки колоколов на отказ по электрохимической коррозии отличаются на 9 тыс. ч, при среднегодовой наработке 6-7 тыс. ч.
При этом с увеличением номера электролизера в цепи электроснабжения наработка колокола на отказ может линейно увеличиваться или уменьшаться в пределах определенных номеров электролизеров.
Из табл. 2 видно, что по мере уменьшения силы тока на электролизерах происходило увеличение удельного расхода электроэнергии, что могло быть связано с работой электролизеров с малым содержанием фтористого водорода в электролите.
Действительно, в рассматриваемый период времени среднегодовая доля анализов электролита с результатом меньше 37% увеличивалась и достигла к 1992 г. 50%, а на отдельных электролизерах 70%. Установлено, что с увеличением доли анализов электролита с результатом меньше 37% в общем количестве анализов (в межремонтную наработку электролизера) наработка колокола на отказ по причине его электрохимической коррозии уменьшается. Уменьшение удельного расхода электроэнергии в 1993 г. можно объяснить увеличением выпуска фтора, а последующее увеличение этого показателя — уменьшением выпуска фтора и увеличением доли потерь в общем расходе электроэнергии.
Физический смысл уравнений регрессии (табл.2) может состоять в очевидном проявлении протекторной защиты колоколов одного из электролизеров, отвечающему номеру точки перегиба, по отношению к колоколам электролизеров с номерами в убывающей или возрастающей последовательности. Электролизером-протектором могут быть и электролизеры в начале или конце цепи электроснабжения. Действие протекторной защиты, как известно, основано на разности потенциалов активного (растворяющегося) и пассивного (защищаемого) участков поверхности металла, погруженного в электролит. При этом оба участка поверхности электрически соединены посредством проводника 1-го рода (металл) и 2-го рода (через электролит вследствие ионной проводимости). Однако колокола друг от друга электрически изолированы даже в пределах одного электролизера. Остается предполагать, что они электрически связаны через электролит, который может обладать как ионной, так и некоторой электронной проводимостью.
Колокол-протектор, потенциал которого по отношению к электролиту — наименьший из всех колоколов электролизеров, включенных в электрическую цепь, может появиться в результате уменьшения электросопротивления на участке корпус — «земля» до критических значений, при которых происходит уменьшение потенциала колокола по отношению к электролиту.
В таком случае наработка колоколов на отказ по электрохимической коррозии должна уменьшаться с уменьшением электросопротивления на участке корпус — «земля».
Для проверки этого предположения проводились замеры электросопротивления на участке серийных электролизеров корпус — «земля». В табл.3 приведены результаты этих замеров; там же приведены наработки электролизеров на отказ колоколов по электрохимической коррозии для тех же электролизеров, на которых проводились замеры.
Результаты эксплуатации СТЭ-20, полученные в 1993-1997 гг., приведенные в табл.3, сгруппированы по максимальным, минимальным и промежуточным значениям сопротивления электроизоляции. Из табл. 3 видно, что при сопротивлении электроизоляции, большем 1 МОм, наработка колокола на отказ изменяется в интервале 44781-144474 кА-ч, а при сопротивлении электроизоляции, меньшем 1МОм, — в интервале 43117-77373 кА-ч.
Относительно малые наработки колоколов на электролизерах с относительно большими сопротивлениями электроизоляции можно объяснить влиянием малого содержания фтористого водорода в электролите (меньше 37 вес.%) в течение продолжительного времени эксплуатации электролизеров.
Установлено, что наработка колокола на отказ взаимосвязана с продолжительностью работы электролизера при содержании фтористого водорода в электролите меньше 37 вес.% и наработкой анодов уравнением регрессии: К = 90,8346 — 4,5394H 1/2 — 64,7578/М, где К — наработка электролизера на отказ колокола, млн. А-ч; интервал 43,8-105; Н — доля результатов анализа электролита на содержание HF, меньших 37 вес.%; интервал 2-47%; М-наработка анодов, тыс. ч; интервал 2-47 тыс. ч.
Коэффициент корреляции 0,6. Относительно умеренную корреляцию можно объяснить недостаточным количеством анализов электролита.
Тем не менее полученное уравнение регрессии вполне согласуется с многолетним опытом эксплуатации фторных электролизеров.
Из полученного уравнения регрессии следует, что при Н = 0 и наработке анодов больше 10 тыс.ч наработка колокола на отказ по электрохимической коррозии достигает максимума 85-90 млн. А-ч. При Н = 47% наработка колокола уменьшается до 60 млн. А-ч, то есть на 30%. При Н = 0 и М = 2 тыс. ч наработка колокола может быть всего 30 млн. А-ч.
Влияние наработки анодов существенно при их первом использовании вследствие большего пускового периода и образования большего количества угольной пыли в сравнении с теми же показателями для электролизеров, укомплектованных анодами, бывшими в употреблении, или иных причин.
Сложность взаимосвязи наработки стального колокола на отказ, сопротивлением электроизоляции, содержанием фтористого водорода в электролите обусловлена еще и тем, что наработка колокола на отказ коррелируется (с коэффициентами корреляции до 0,99) с порядковым номером электролизера относительно полюса генератора, то есть с потенциалом электролизера относительно «земли», о чем говорилось выше.
Отмеченные взаимосвязи можно объяснить наличием смешанной проводимости электролита и в этом случае выход фтора по току может зависеть от содержания фтористого водорода в электролите и его температуры.
В табл. 4 приведены результаты определения выхода фтора по току на фторных электролизерах разных конструкций, работающих при плотностях тока на аноде 0,2 или 0,4 А/см 2 .
Из табл.4 следует, что в опытно-промышленном электролизер 1 на 20 кА, с верхним вводом анодов, работавшего с плотностью тока на аноде 0,4 А/см 2 , максимальные значения выхода фтора по току 98-100% соответствует интервалу содержания фтористого водорода в электролите 39,4-40,3 вес.% и интервалу температуры электролита 107-112 o С, а минимальные значения выхода фтора по току 91-93 вес.% отвечают интервалы содержания фтористого водорода в электролите: 38,4-39% и температуры электролита 110-112 o С.
В опытно-промышленном электролизере 2, аналогичном по конструкции электролизеру 1, максимальные значения выхода фтора по току 95-96% отвечают интервалу содержания фтористого водорода в электролите 39,7-40,4 вес.% и интервалу температуры электролита 107-114 o С, а минимальному значению выхода фтора по току 93% отвечают интервалы содержания фтористого водорода в электролите 39,3-39,5 вес.% и температуры электролита 107-110 o С.
В электролизере 3 с боковым вводом анодов на 2 кА, работающем с плотностью тока 0,4 А/см 2 , при содержании фтористого водорода в электролите в интервале 39-41 вес. % выход фтора по току увеличивается от 86-92 до 95-96 вес.% с увеличением температуры электролита от 100-108 до 113-118 o С.
Из полученных данных следуют оптимальные параметры работы электролизера с плотностью тока на аноде 0,4 А/см 2 : содержание фтористого водорода в электролите 39,2-40,4 вес.% и температура электролита в интервале 106-112 o С.
В СТЭ-20 с увеличением содержания фтористого водорода в электролите от 37,3 до 40 вес.%, в интервале изменения температуры электролита 94-120 o С выход фтора по току может увеличиваться от 86 до 99%.
Очевидно наличие регрессии выхода фтора по току с температурой электролита и содержанием в нем фтористого водорода.
Увеличение концентраций ионов железа и меди в электролите способствует протеканию процесса окисления-восстановления ионов железа и меди. При содержании примеси железа в электролите более 0,6 вес.% выход фтора по току уменьшается и процесс окисления-восстановления ионов железа может конкурировать с электронной проводимостью. В этом случае выход фтора по току может не зависеть от температуры электролита и содержания в нем фтористого водорода или зависеть не в такой степени, как при использовании чистого электролита.
Уменьшению выхода фтора по току способствуют дефекты анодов при контакте электролита с медным токоподводящим штоком. Его растворение ведет к накоплению ионов меди в расплаве, которые участвуют в переносе тока.
Широкому применению электролита в указанных интервалах температуры и содержания фтористого водорода в электролите при электролизе фтора препятствует недостаточная стойкость анодов и накопление примесей железа и меди в электролите. Для исключения этих неблагоприятных факторов необходимо применять аноды улучшенного качества по патенту РФ 2118995 с приоритетом от 01.07.96 «Анод фторного среднетемпературного электролизера».
В качестве материала газоразделительного колокола рекомендуется анодно-защищенный магниево-алюминиевый сплав, наработка которого соизмерима с наработкой анодов до отказа улучшенного качества (до 50 тыс. ч).
Предлагаемый способ получения фтора может быть использован во фторных электролизерах биполярного типа, с принудительной циркуляцией электролита [1, стр. 94] , конструкция которых может обеспечить охлаждение и насыщение трифторидного расплава в отдельном аппарате.
Литература 1. Н.П.Галкин, А.Б.Крутиков. Технология фтора. М.: Атомиздат, 1960 г.
2. Ю. К.Делимарский. Теоретические основы электролиза ионных расплавов. М., 1986, стр. 39-41, 183-187.
А.Н.Харин, Н.А.Катаева, Л.Т.Харина. Курс химии. М., стр. 287-295.