Способ получения этилена химические реакции

Этилен (этен), получение, свойства, химические реакции

Электронное и пространственное строение молекулы

Атомы углерода находятся во втором валентном состоянии (sp 2 —гибридизация). В результате, на плоскости под углом 120° образуются три гибридных облака, которые образуют три σ-связи с углеродом и двумя атомами водорода; p-электрон, который не участвовал в гибридизации, образует в перпендикулярной плоскости π-связь с р-электроном соседнего атома углерода. Так образуется двойная связь между атомами углерода. Молекула имеет плоскостное строение.

Видео

Получение

  1. Этилен в лаборатории получают при нагревании смеси этилового спирта с концентрированной серной кислотой.
  2. Углеводороды ряда этилена можно получить также дегидрированием предельных углеводородов.
  3. На производстве этилен получают из природного газа и при процессах пиролиза нефти.
  4. Углеводороды ряда этилена можно получить при взаимодействии дигалогенопроизводных предельных углеводородов с металлами.
  5. При действии спиртовых растворов щелочей на галогенопроизводные отщепляется галогеноводород и образуется углеводород с двойной связью.

Получение этилена (этена). Химические реакции – уравнения получения этилена (этена):

Этилен получают как в лабораторных условиях, так и в промышленных масштабах.

В промышленных масштабах этилен получается в результате следующей химической реакции:

  1. 1. каталитическое дегидрирование этана :

Этилен в лабораторных условиях получается в результате следующих химических реакций:

  1. 2. дегалогенирования дигалогенпроизводных этана:
  1. 3. неполное гидрирование ацетилена:
  1. 4. дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей:

Получение этилена

Способы получения этилена можно разделить на промышленные и лабораторные. В первом случае этен – это продуктдегидрирования этана, полученного при крекинге нефти.

В лабораторных условиях этилен можно получить при помощи дегидратации этанола (1), дегалогенированиямоно- и дигалогенпроизводных этана (2, 3) или при неполном гидрировании ацетилена (4):

Примеры решения задач

Задание Осуществите ряд превращений: этан → этен → этанол → этен → хлорэтан → бутан. Решение Для получения этена из этана необходимо использовать реакцию дегидрирования этана, которая протекает в присутствии катализатора (Ni, Pd, Pt) и при нагревании: С2H6 →C2H4 + H2. Получение этанола из этена осуществляют по реакции гидратации, протекающей водой в присутствии минеральных кислот (серной, фосфорной): С2H4 + H2O = C2H5OH. Для получения этена из этанола используют реакцию дегидротации: C2H5OH →(t, H2SO4) → C2H4 + H2O. Получение хлорэтана из этена осуществляют по реакции гидрогалогенирования: С2H4 + HCl → C2H5Cl. Для получения бутана из хлорэтана используют реакцию Вюрца: 2C2H5Cl +2Na → C4H10 + 2NaCl.

Задание Сколько граммов потребуется для бромирования 16,8 г алкена, если известно, что при каталитическом гидрировании такого же количества алкена присоединилось 6,72 л водорода? Каков состав и возможное строение исходного углеводорода? Решение Запишем в общем виде уравнения бромирования и гидрирования алкена: CnH2n + Br2 = CnH2nBr2 (1); CnH2n + H2 = CnH2n+2 (2). Рассчитаем количество вещества водорода: n = V / Vm; n(H2) = V(H2) / Vm; n(H2) = 6,72 / 22,4 = 0,3 моль, следовательно, алкена тоже будет 0,3 моль (уравнение 2), а по условию задачи это 16,8 г. Значит молярная масса его будет равна: M = m / n; M(CnH2n) = m(CnH2n) / n(CnH2n); M(CnH2n) = 16,8 / 0,3 = 56 г/моль, что соответствует формуле C4H8. Согласно уравнению (1) n(CnH2n) :n(Br2) = 1:1, т.е. n(Br2) = n(CnH2n) = 0,3 моль. Найдем массу брома: m = n×M; m(Br2) = n(Br2) × M(Br2); M(Br2) = 2×Ar(Br) = 2×80 = 160 г/моль; m(MnO2) = 0,3 × 160 = 48 г. Составим структурные формулы изомеров: бутен-1 (1), бутен-2 (2), 2-метилпропен (3), циклобутан (4). CH2=CH-CH2-CH3 (1); CH3-CH=CH-CH3 (2); CH2=C(CH3)-CH3 (3); C4H8 (4). Ответ Масса брома равна 48 г.

Читайте также:  Что такое способ исполнения решения суда по алиментам

Источник

Этилен, структурная формула, химические, физические свойства

Физические свойства этилена (этена):

Наименование параметра: Значение:
Цвет без цвета
Запах со слабым запахом
Вкус без вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м 3 1,178
Плотность (при 0 °C и атмосферном давлении 1 атм.), кг/м 3 1,26
Температура плавления, °C -169,2
Температура кипения, °C -103,7
Температура вспышки, °C 136,1
Температура самовоспламенения, °C 475,6
Критическая температура*, °C 9,6
Критическое давление, МПа 5,033
Взрывоопасные концентрации смеси газа с воздухом, % объёмных от 2,75 до 36,35
Удельная теплота сгорания, МДж/кг 46,988
Коэффициент теплопроводности (при 0 °C и атмосферном давлении 1 атм.), Вт/(м·К) 0,0163
Коэффициент теплопроводности (при 50 °C и атмосферном давлении 1 атм.), Вт/(м·К) 0,0209
Молярная масса, г/моль 28,05

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Видео

Получение этилена

Основные способы получения этилена:

— дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей

— дегалогенирование дигалогенпроизводных алканов под действием активных металлов

— дегидратация этилена при его нагревании с серной кислотой (t >150 C) или пропускании его паров над катализатором

— дегидрирование этана при нагревании (500С) в присутствии катализатора (Ni, Pt, Pd)

Химические свойства

Благодаря наличию в молекуле π-связи реакционная способность алкенов намного выше, чем у алканов. Напомним, что для алканов характерны реакции замещения. Для алкенов характерными являются реакции присоединения:

Эти реакции сопровождаются разрывом π-связи, так как она менее прочная, чем σ-связь.

В реакции присоединения алкены вступают в более мягких условиях, чем алканы в реакции замещения. Реакции замещения для алкенов нехарактерны.

Реакции окисления

1. Горение. Взаимодействие с кислородом

Так же, как и алканы, алкены горят с образованием углекислого газа и воды:

Приведём уравнение реакции горения алкенов в общем виде:

2. Неполное окисление. Реакция с KMnO4

Окисление алкенов может протекать и без разрушения углеродного скелета. Так, при пропускании этилена через разбавленный водный раствор перманганата калия (KMnO4) фиолетового цвета окраска исчезает. Перманганат калия расщепляет π-связь в молекуле этилена, при этом σ-связь между атомами углерода сохраняется. Протекание этой реакции отобразим не с помощью уравнения, а упрощённо в виде схемы. Схема реакции окисления этилена водным раствором перманганата калия выглядит следующим образом:

В схемах обычно изображают формулы исходного органического вещества и продукта его превращения. При этом легче проследить за изменениями органического вещества в ходе реакции. В схемах, как правило, ставят коэффициенты только перед формулами органических веществ. Формулы реагентов, под действием которых происходит превращение органического вещества, принято писать над стрелкой. В данном случае это перманганат калия (KMnO4) и растворитель (вода).

Читайте также:  Способы применения растворов фармакология

Из схемы видно, что π-связь в ходе данной реакции раскрывается, к атомам углерода присоединяются две кислородсодержащие группы — OH , то есть этилен окисляется. В результате образуется этиленгликоль, представитель многоатомных спиртов.

Видео 15.1. Качественные реакции на двойную связь Написание схем часто оказывается более удобным, чем уравнений, поэтому их широко используют в органической химии. Так же, как и реакция с бромной водой, реакция с растворомперманганатакалияявляетсякачественной реакцией на двойную связь. В результате данной реакции наблюдается обесцвечивание фиолетового раствора перманганата калия.

Характерными для алкенов являются реакции присоединения по двойной связи. При этом происходит расщепление π -связи. Алкены могут присоединять галогены, водород, галогеноводороды, воду.

Реакция полимеризации — это многократно повторяющаяся реакция присоединения. В результате этой реакции образуются гигантские молекулы полимеров, широко применяемых в нашей жизни.

Низкомолекулярное вещество, из которого синтезируют полимер, называется мономером; число мономерных звеньев в макромолекуле полимера называется степенью полимеризации.

Реакции обесцвечивания бромной воды и раствора перманганата калия являются качественными реакциями на двойную связь.

Применение и использование этилена (этена):

– как сырье в химической промышленности для органического синтеза различных органических соединений: галогенпроизводных, спиртов (этанола, этиленгликоля), винилацетата, дихлорэтан, винилхлорида, окиси этилена, полиэтилена , стирола, уксусной кислоты, этилбензола, этиленгликоля и пр.,

Примечание: © Фото //www.pexels.com, //pixabay.com

Найти что-нибудь еще? карта сайта

как получить этилен реакция ацетилен этен 1 2 вещество этилен кислород водород связь является углекислый газ бромная вода уравнение реакции масса объем полное сгорание моль молекула смесь превращение горение получение этилена напишите уравнение реакций этилен

Источник

Физические и химические свойства этилена

Формула – С2Н4 (СН2 = СН2). Молекулярная масса (масса одного моль) – 28 г/моль.

Углеводородный радикал, образованный от этилена называется винил (-CH = CH2). Атомы углерода в молекуле этилена находятся в sp 2 -гибридизации.

Химические свойства этилена

Для этилена характерны реакции, протекающщие по механизму электрофильного, присоединения, реакции радикального замещения, окисления, восстановления, полимеризации.

Галогенирование (электрофильное присоединение) — взаимодействие этилена с галогенами, например, с бромом, при котором происходит обесцвечивание бромной воды:

Галогенирование этилена возможно также при нагревании (300С), в этом случае разрыва двойной связи не происходит – реакция протекает по механизму радикального замещения:

Гидрогалогенирование — взаимодействие этилена с галогенводородами (HCl, HBr) с образование галогенпроизводных алканов:

Гидратация — взаимодействие этилена с водой в присутствии минеральных кислот (серной, фосфорной) с образованием предельного одноатомного спирта – этанола:

Среди реакций электрофильного присоединения выделяют присоединение хлорноватистой кислоты (1), реакции гидрокси- и алкоксимеркурирования (2, 3) (получение ртутьорганических соединений) и гидроборирование (4):

Реакции нуклеофильного присоединения характерны для производных этилена, содержащих электроноакцепторные заместители. Среди реакций нуклеофильного присоединения особое место занимают реакции присоединения циановодородной кислоты, аммиака, этанола. Например,

В ходе реакций окисления этилена возможно образование различных продуктов, причем состав определяется условиями проведения окисления. Так, при окислении этилена в мягких условиях (окислитель – перманганат калия) происходит разрыв π-связи и образование двухатомного спирта — этиленгликоля:

Читайте также:  Что является комбинированным способом тепловой обработки

При жестком окислении этилена кипящим раствором перманганата калия в кислой среде происходит полный разрыв связи (σ-связи) с образованием муравьиной кислоты и углекислого газа:

Окисление этилена кислородом при 200С в присутствии CuCl2 и PdCl2 приводит к образованию ацетальдегида:

При восстановлении этилена происходит образование этана, представителя класса алканов. Реакция восстановления (реакция гидрирования) этилена протекает по радикальному механизму. Условием протекания реакции является наличие катализаторов (Ni, Pd, Pt), а также нагревание реакционной смеси:

Этилен вступает в реакцию полимеризации. Полимеризация — процесс образования высокомолекулярного соединения – полимера-путем соединения друг с другом с помощью главных валентностей молекул исходного низкомолекулярного вещества – мономера. Полимеризация этилена происходит под действием кислот (катионный механизм) или радикалов (радикальный механизм):

Физические свойства этилена

Этилен – бесцветный газ со слабым запахом, малорастворимый в воде, растворим в спирте, хорошо растворим в диэтиловом эфире. При смешении с воздухом образует взрывоопасную смесь

Получение этилена

Основные способы получения этилена:

— дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей

— дегалогенирование дигалогенпроизводных алканов под действием активных металлов

— дегидратация этилена при его нагревании с серной кислотой (t >150 C) или пропускании его паров над катализатором

— дегидрирование этана при нагревании (500С) в присутствии катализатора (Ni, Pt, Pd)

Применение этилена

Этилен является одним из важнейших соединений, производимых в огромных промышленных масштабах. Его используют в качестве сырья для производства целого спектра различных органических соединений (этанол, этиленгликоль, уксусная кислота и т.д.). Этилен служит исходным сырьем для производства полимеров (полиэтилен и др.). Его применяют в качестве вещества, ускоряющего рост и созревание овощей и фруктов.

Примеры решения задач

Задание Осуществите ряд превращений этан → этен (этилен) → этанол → этен → хлорэтан → бутан.
Решение Для получения этена (этилена) из этана необходимо использовать реакцию дегидрирования этана, которая протекает в присутствии катализатора (Ni, Pd, Pt) и при нагревании:

Получение этанола из этена осуществляют по реакции гидратации, протекающей водой в присутствии минеральных кислот (серной, фосфорной):

Для получения этена из этанола используют реакцию дегидротации:

Получение хлорэтана из этена осуществляют по реакции гидрогалогенирования:

Для получения бутана из хлорэтана используют реакцию Вюрца:

Задание Вычислите сколько литров и граммов этилена можно получить из 160 мл этанола, плотность которого равна 0,8 г/мл.
Решение Этилен из этанола можно получить по реакции дегидратации, условием протекания которой является присутствие минеральных кислот (серной, фосфорной). Запишем уравнение реакции получения этилена из этанола:

Найдем массу этанола:

Молярная масса (молекулярная масса одного моль) этанола, вычисленная с помощью таблицы химических элементов Д.И. Менделеева – 46 г/моль. Найдем количество вещества этанола:

Могласно уравнению реакции v(C2H5OH) : v(C2H4) = 1:1, следовательно, v(C2H4) = v(C2H5OH) = 2,78 моль. Молярная масса (молекулярная масса одного моль) этилена, вычисленная с помощью таблицы химических элементов Д.И. Менделеева – 28 г/моль. Найдем массу и объем этилена:

Источник

Оцените статью
Разные способы