- Способы питания и получения энергии растениями
- Действительно зеленое электричество
- Как зарядиться от картошки
- Зеленый лист — солнечная батарея мечты
- Биотехнический симбиоз
- Биофотогальваника
- Электричество из живых растений, зеленые электростанции.
- Зеленые электростанции, получаем электричество
- История развития
- Бактериородопсин, что это?
- Белковые-генераторы
Способы питания и получения энергии растениями
Тема 4. ОСНОВНЫЕ ПРОЦЕССЫ ЖИЗНЕДЕЯТЕЛЬНОСТИ РАСТЕНИЙ
Способы питания и получения энергии растениями
Организмы как открытые системы для поддержания своей жизнедеятельности, получают энергию извне. Эта энергия накапливается в виде энергии химических связей органических соединений. Универсальный источник энергии для всего живого на Земле – энергия солнечной радиации. Но способы использования ее живыми организмами различны (табл. 1).
Фотоавтотрофные организмы зависят от световой энергии (зеленые растения и фототрофные прокариоты). Они запасают энергию, образуя первичные органические соединения из неорганических в процессе фотосинтеза.
Гетеротрофные организмы (животные, грибы, большинство прокариот) не могут создавать органические соединения из неорганических. В качестве источника углерода они используют органические формы этого элемента. В качестве источника энергии они также используют органические вещества, созданные в процессе жизнедеятельности фотоавтотрофами.
Хемоавтотрофные организмы (некоторые прокариоты) получают энергию, выделяемую при перестройке молекул минеральных или органических соединений в процессе химических реакций. Источником углерода служат минеральные формы углерода.
В зависимости от используемого соединения, а также от источников энергии, различают следующие основные типы питания углеродом и построения органических веществ.
Способ питания организмов по источнику углерода и источнику получения энергии
Источник
Действительно зеленое электричество
Смогут ли растения стать новым источником экологически чистой энергии
В погоне за альтернативными источниками энергии ученые не обошли стороной и царство растений. Разумеется, речь идет о гораздо более продвинутых технологиях, чем «классическое» извлечение электроэнергии из картофелины или апельсина с помощью воткнутых в них электродов. Целая область науки ищет, чем бы заполнить новую страницу в истории взаимоотношений человека и зеленых легких планеты. Подробнее об этом, а также о развиваемом в России проекте «Green Spark», который уже дает энергию из биофотогальванических ячеек, можно будет узнать 19 мая на фестивале «Политех».
Как зарядиться от картошки
По интернету давно бродят фото- и видеоизображения горящих лампочек, присоединенных к картофелине (апельсину, лимону, яблоку). Также в сети полно инструкций, как в домашних условиях изготовить картошкобатарейку. Достаточно взять картофелину, медный и оцинкованный электроды (гвозди, например), соединительные провода и светодиодную лампочку для демонстрации электрического эффекта. В один бок корнеплода (или фрукта) втыкаем цинковый электрод, затем соединяем его с лампочкой, другой полюс лампочки соединяем с медным электродом, который втыкаем в ту же картофелину, но с другого бока.
Все эти действия рациональны и химически объяснимы: кислая среда внутри растительного источника создает необходимое количество свободных протонов (H+). В такой среде при взаимодействии с активным (хорошо отдающим электроны) металлом выделяются свободные носители отрицательного элементарного заряда, готовые бежать по цепи и заставлять лампочку светиться. В свою очередь, поток протонов от анода к катоду, как положено в батарейках, создает электродвижущую силу и замыкает цепь. Катод делается из менее активного металла (цинк против меди). А в качестве активной среды подойдет даже лист или стебель — любая, даже слабокислотная, часть растения.
Важный вопрос: насколько такие аккумуляторы эффективны? (И не полезнее ли будет их употреблять в классическом виде — в пищу?) Для ответа на него есть много экспериментальных демонстраций, которые позволяют рассчитать: чтобы зарядить смартфон, понадобится около 50 килограммов картофеля. Безусловно, конкретные характеристики растительного аккумулятора зависят от многих факторов — кислотности источника энергии (так, лимон явно кислее картофеля), свежести образца и даже кислотности почвы, в которой он вырос. Прибавим сюда качество гвоздей, сплавов, которыми эти гвозди покрыты и так далее. Но, как ни подбирай ингредиенты, явным недостатком вегетарианской подзарядки будет ее невысокая эффективность при большой отходности. Что картофелина, что лимон работать будут недолго, их придется часто менять, и пока зарядится смартфон, не один мешок опустеет.
Так что этот способ — скорее забавная шутка или фантазия для постапокалиптического сценария, чем надежда для удаленных и лишенных промышленных электростанций уголков Земли.
Зеленый лист — солнечная батарея мечты
Солнечная батарея — один из самых популярных экологичных энергетических девайсов. В ее основе лежит красивая идея — взять солнечную энергию, которая и так греет планету, и извлечь из нее электроэнергию без всяких побочных эффектов. Однако у этих устройств, несмотря на то, что они изобретены уже давно и с тех пор постоянно совершенствуются, есть ряд существенных недостатков. Главные из них — низкая эффективность (лишь некоторые коммерческие образцы обладают КПД на уровне 20 процентов) и ограниченная функциональность (работают, только пока светит солнце).
Растения — те же солнечные батареи, просто естественные. В процессе фотосинтеза молекулы пигментов, находящиеся в мембранах тилакоидов, поглощают энергию солнечного света и преобразуют ее в энергию химических соединений.
Физически при поглощении кванта света определенной частоты электрон в молекуле пигмента переходит из основного состояния в возбужденное, то есть на более высокий энергетический уровень. «Разрядка» возбужденного состояния молекулы хлорофилла может происходить в виде выделения тепла или в флуоресценции, кроме того энергия возбужденного состояния может передаваться соседней молекуле пигмента или расходоваться на фотохимические процессы.
Более 90 процентов хлорофилла хлоропластов входит в состав светособирающих комплексов — своеобразных антенн, переносящих энергию возбуждения к реакционным центрам первой и второй фотосистемы для последующего первичного разделения зарядов. В этих же фотосистемах сперва происходят окислительно-восстановительные превращения хлорофилла, а затем — фиксация энергии света в химическую энергию. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, далее в ходе нескольких химических реакций образуются кислород и свободные электроны и протоны (H). Кислород удаляется во внешнюю среду, а протоны приводя к тому, что мембрана тилакоида с одной стороны заряжается положительно за счет H+, с другой стороны — отрицательно за счет электронов. Далее процесс продолжается и завершается уже в без участия солнечного света синтезом органики из фиксированного из атмосферы углекислого газа.
Инженеры с завистью смотрят на зеленые листья и думают, как бы им подключиться к этому мембранному конденсатору. Ведь фотосистемы растительных пигментов используют солнечную энергию с очень большой эффективностью (если считать в поглощенных фотонах на вырабатываемый электрон). Некоторые даже утверждают, что нашли путь к хакингу фотосинтеза и уводу электронов прямо из-под носа у реакционных центров.
Биотехнический симбиоз
К счастью, растения помогают добыть электричество и другими способами, которые гораздо проще поддаются перепрофилированию в сторону удовлетворения потребностей цивилизации. В последние годы популярным направлением развития «зеленых» гальванических элементов стали так называемые топливные ячейки «бактерия + растение» (plant-microbial fuel cells, PMFCs). В отличие от батареек на картошке, такой тип растительных источников энергии, теоретически, является самообновляемым: все, что ему нужно для функционирования и генерации, — это солнечный свет, углекислый газ, вода и подходящие растения.
Прообразом подобной концепции был некоторый гальванический контейнер, в котором под воздействием бактерий в осадочном грунте (например, в иле на дне водоемов) расщеплялась содержащаяся в нем органика (Microbial fuel cells, MFCs). Такой осадочный реактор в комплекте с электродами играет роль анода, катод при этом погружен в воду. Как и в стандартной «батарейке», положительные ионы движутся от анода к катоду, замыкая цепь.
Биофотогальваника
Вышеописанную систему удалось усовершенствовать, пересадив в илистый реактор водные растения, — именно этот апгрейд позволяет инженерам надеяться на самовоспроизводимость источника питания. Растения, поглощая солнечную энергию и углекислый газ, в процессе фотосинтеза генерируют органические вещества, часть из которых попадает в почву. Симбиотические бактерии, живущие вблизи корней, расщепляют эту органику, выделяя электроны в качестве побочного продукта. Эти электроны могут быть захвачены анодом.
Эффективность биофотогальванических систем зависит от многих факторов. Это и количество выделяемой в почву органики, и доступность этой органики для микроорганизмов, и эффективность «сбора» электронов фотогальванической системой. Первые два фактора практически недоступны для улучшения — в лучшем случае человек может подобрать растения, выделяющие органику с более длинными углеродными цепями или с более «удобной» для микроорганизмов корневой системой. Поэтому наиболее перспективный пункт — повышение эффективности захвата электронов.
Источник
Электричество из живых растений, зеленые электростанции.
Голландская компания Plant-e превращает энергию живых растений в электричество, которое может использоваться людьми в своих нуждах.
Электричество из растений
В настоящее время множество исследовательских групп занимаются поисками методов получения энергии буквально «из чистого воздуха». Один из таких методов уже удалось обнаружить специалистам голландской компании Plant-e, которые очень пристально и тщательно изучили некоторые процессы, протекающие в живой природе. Для получения электрической энергии они используют один из побочных продуктов фотосинтеза, процесса, протекающего в растущих растениях, и этот метод может принести электричество тем людям, которые живут на значительном удалении от всех благ цивилизации.
Технология, разработанная специалистами компании Plant-e, работает на тех же самых принципах, что и старый школьный опыт, в котором в качестве источника энергии выступает клубень обыкновенного картофеля. Однако, разработанный голландцами метод не требует нанесения повреждений самому растению.
Электричество из живых растений
Голландцы высаживают растения особого вида в специальные пластиковые контейнеры, площадь которых равна приблизительно четверти квадратного метра. Эти растения интенсивно растут и за счет процессов фотосинтеза вырабатывают некоторые виды сахаристых соединений. Количество сахара, вырабатываемого растениями, существенно превышает потребности самого растения и его излишки «сбрасываются» через корневую систему обратно в почву. Сахар, выработанный растениями и попавший в почву, начинает достаточно активно реагировать с атмосферным кислородом и в ходе протекающей химической реакции получается множество свободных электронов. Электроды, погруженные в почву, собирают эти свободные электроны, превращая их в электрический ток, а количество получаемого при этом электричества достаточно для того, чтобы обеспечить потребности светодиодных осветительных приборов, точек доступа Wi-Fi или зарядки аккумуляторных батарей мобильных электронных устройств.
Используя свою технологию, компания Plant-e в ноябре 2014 года начала реализацию программы «Starry Sky». В рамках этой программы при помощи энергии, получаемой от растений, было запитано около 300 уличных осветительных приборов, несколько точек доступа Wi-Fi и точек зарядки мобильных телефонов, располагающихся возле офиса компании в Вагенингене и на территории военного музея, бывшего военного завода, склада и базы HAMbrug возле Амстердама.
Основатели компании Plant-e надеются, что разработанная ими биологическая технология получения электрической энергии сможет найти свое применение в некоторых бедных регионах земного шара удаленных от центров цивилизации, там, где природные условия максимально благоприятны для роста растений и где, в силу различных причин не получается использовать другие технологии получения экологически чистой энергии.
Зеленые электростанции, получаем электричество
Непосредственная трансформация световой энергии в электрическую лежит в основе работы генераторов, содержащих хлорофилл. Хлорофилл под действием света может отдавать и присоединять электроны. М. Кальвин в 1972 году выдвинул идею создания фотоэлемента, в котором в качестве источника электрического тока служил бы хлорофилл, способный при освещении отнимать электроны от каких-то определенных веществ и передавать их другим. Кальвин использовал в качестве проводника, контактирующего с хлорофиллом, оксид цинка. При освещении этой системы в ней возникал электрический ток плотностью 0,1 микроампера на квадратный сантиметр.
Этот фотоэлемент функционировал сравнительно недолго, поскольку хлорофилл быстро терял способность отдавать электроны. Для продления времени действия фотоэлемента был использован дополнительный источник электронов — гидрохинон. В новой системе зеленый пигмент отдавал не только свои, но и электроны гидрохинона. Расчеты показывают, что такой фотоэлемент площадью 10 квадратных метров может обладать мощностью около киловатта.
История развития
Японский профессор Фудзио Такахаси для получения электроэнергии использовал хлорофилл, извлеченный из листьев шпината. Транзисторный приемник, к которому была присоединена солнечная батарейка, успешно работал. Кроме того, в Японии проводятся исследования по преобразованию солнечной энергии в электрическую с помощью цианобактерий, выращенных в питательной среде. Тонким слоем их наносят на прозрачный электрод из оксида цинка и вместе с противоэлектродом погружают в буферный раствор. Если теперь бактерии осветить, то в цепи возникнет электрический ток.
В 1973 году американцы У. Стокениус и Д. Остерхельт описали необычный белок из мембран фиолетовых бактерий, обитающих в соленых озерах Калифорнийских пустынь. Его назвали бактериородопсином. Любопытно отметить, что бактериородопсин появляется в мембранах галобактерий при недостатке кислорода. Дефицит же кислорода в водоемах возникает в случае интенсивного развития галобактерий. С помощью бактериородопсина бактерии усваивают энергию Солнца, компенсируя тем самым возникший в результате прекращения дыхания дефицит энергии.
Бактериородопсин, что это?
Бактериородопсин можно выделить из галобактерий, поместив эти солелюбивые создания, прекрасно чувствующие себя в насыщенном растворе поваренной соли, в воду. Тотчас же они переполняются водой и лопаются, при этом их содержимое смешивается с окружающей средой. И только мембраны, содержащие бактериородопсин, не разрушаются из-за прочной “упаковки” молекул пигмента, которые образуют белковые кристаллы (еще не зная структуры, ученые назвали их фиолетовыми бляшками). В них молекулы бактериородопсина объединены в триады, а триады — в правильные шестиугольники. Поскольку бляшки значительно крупнее всех других компонентов галобактерий, их нетрудно выделить путем центрифугирования. После промывки центрифугата получается пастообразная масса фиолетового цвета. На 75 процентов она состоит из бактериородопсина и на 25 — из фосфолипидов, заполняющих промежутки между белковыми молекулами.
Фосфолипиды — это молекулы жиров в соединении с остатками фосфорной кислоты. Другие вещества в центрифугате отсутствуют, что создает благоприятные условия для экспериментирования с бактериородопсином. К тому же это сложное соединение очень устойчиво к факторам внешней среды. Оно не утрачивает активности при нагревании до 100 °С и может храниться в холодильнике годами. Бактериородопсин устойчив к кислотам и различным окислителям. Причина его высокой устойчивости обусловлена тем, что эти галобактерии обитают в чрезвычайно суровых условиях — в насыщенных солевых растворах, какими, по существу, являются воды некоторых озер в зоне выжженных тропическим зноем пустынь.
В такой чрезвычайно соленой, да к тому же еще и перегретой, среде организмы, обладающие обычными мембранами, существовать не могут. Это обстоятельство представляет большой интерес в связи с возможностью использования бактериородопсина в качестве трансформатора световой энергии в электрическую.
Если выпавший в осадок под воздействием ионов кальция бактериородопсин осветить, то с помощью вольтметра можно обнаружить наличие электрического потенциала на мембранах. Если выключить свет, он исчезает. Таким образом, ученые доказали, что бактериородопсин может функционировать как генератор электрического тока.
Белковые-генераторы
В лаборатории известного ученого, специалиста в области биоэнергетики В. П. Скулачева тщательно исследовались процесс встраивания бактериородопсина в плоскую мембрану и условия функционирования его в качестве светозависимого генератора электрического тока. Позднее в этой же лаборатории были созданы электрические элементы, в которых использовались белковые генераторы электрического тока. В этих элементах имелись мембранные фильтры, пропитанные фосфолипидами с бактериородопсином и хлорофиллом. Ученые полагают, что подобные фильтры с белками-генераторами, соединенные последовательно, могут служить в качестве электрической батареи. Исследования по прикладному использованию белков-генераторов, выполненные в лаборатории В. П. Скулачева, привлекли к себе пристальное внимание ученых. В Калифорнийском университете создали такую же батарею, которая при однократном использовании в течение полутора часов заставляла светиться электрическую лампочку.
Результаты экспериментов вселяют надежду, что фотоэлементы на основе бактериородопсина и хлорофилла найдут применение в качестве генераторов электрической энергии. Проведенные опыты — первый этап в создании новых видов фотоэлектрических и топливных элементов, способных трансформировать световую энергию с большой эффективностью. Уже совсем скоро наступит день, когда человечество научится получать «электричество из растений».
Источник