Оксид азота IV: получение и химические свойства
Оксиды азота | Цвет | Фаза | Характер оксида |
N2O Оксид азота (I), закись азота, «веселящий газ» | бесцветный | газ | несолеобразующий |
NO Оксид азота (II), закись азота, «веселящий газ» | бесцветный | газ | несолеобразующий |
N2O3 Оксид азота (III), азотистый ангидрид | синий | жидкость | кислотный |
NO2 Оксид азота (IV), диоксид азота, «лисий хвост» | бурый | газ | кислотный (соответствуют две кислоты) |
N2O5 Оксид азота (V), азотный ангидрид | бесцветный | твердый | кислотный |
Оксид азота (IV) — бурый газ. Очень ядовит! Для NO2 характерна высокая химическая активность.
Способы получения
1. Оксид азота (IV) образуется при окислении оксида азота (II) кислородом или озоном:
2. Оксид азота (IV) образуется при действии концентрированной азотной кислоты на неактивные металлы.
Например , при действии концентрированной азотной кислоты на медь:
3. Оксид азота (IV) образуется также при разложении нитратов металлов, которые в ряду электрохимической активности расположены правее магния (включая магний) и при разложении нитрата лития.
Например , при разложении нитрата серебра:
Химические свойства
1. Оксид азота (IV) реагирует с водой с образованием двух кислот — азотной и азотистой:
Если растворение NO2 в воде проводить в избытке кислорода , то образуется только азотная кислота:
Поскольку азотистая кислота неустойчива, то при растворении NO2 в теплой воде образуются HNO3 и NO:
При нагревании выделяется кислород:
2. При растворении оксида азота (IV) в щелочах образуются нитраты и нитриты:
В присутствии кислорода образуются только нитраты:
3. Оксид азота (IV) – сильный окислитель. В атмосфере оксида азота (IV) горят фосфор , уголь , сера , оксид серы (IV) окисляется до оксида серы (VI):
4. Оксид азота (IV) димеризуется :
Источник
методы получения и аттестации диоксида азота
Диоксид азота (NO2)-одно из существующих соединений азота.
Молекула диоксида азота имеет угловое строение, угол равен 135° 4’. (рис. 1,2). Длина связи между азотом и кислородом равна 0,119 нм, а между двумя атомами азота – 0,178 нм. В обычном состоянии NO2 существует в равновесии со своим димером N2O4. Наличием одного неспаренного электрона у атома азота объясняется склонность его молекул к взаимодействию друг с другом. В зависимости от температуры равновесие между NO2 и N2O4 смещается в ту или иную сторону. Ниже -12° С белые кристаллы состоят только из молекул димера N2O4, выше указанной температуры плавления образуется жидкость светло-желтого цвета, но только 0,01% молекул превращается в мономер. При температуре кипения 0,1% мономера придают жидкости красно-бурый цвет, в паре при 100° С содержится до 90% мономера. Полное превращение происходит при 140° С и придает пару почти черный цвет. Диоксид азота ядовит и имеет удушающий запах.
Физические свойства диоксида азота.
Как было указано выше, мономер и димер различаются по внешнему виду, кроме того, мономер – парамагнетик, а димер – диамагнетик. Хорошо растворяется в холодной воде, насыщенный раствор ярко-зеленый. Ниже в алфавитном порядке перечислены основные физические и физико-химические константы для диоксида азота, в случае, когда не указываются температура или давление, то имеются в виду нормальные условия: t=0° C, p=101325 Па. Критическая плотность r кр=560 кг/м3; Критическая температура Tкр=431 К; Критический объем Vкр=82Ч 10-6 м3/моль; Критическое давление pкр=10,1 МПа; Магнитная восприимчивость c =3,26Ч 10-9 м3/кг (при Т=408 К) , c =-0,276Ч 10-9 м3/кг (при Т=257 К) , c =-0,250Ч 10-9 м3/кг (при Т=295,1 К); Молярная изобарная теплоемкость СР=37,2 Дж/мольЧ К, СР(N2O4)=79,2 Дж/мольЧ К; Плотность r =1490 кг/м3; Постоянные Ван-дер-Ваальса a=0,5346 НЧ м4/моль2, b=44,206Ч 10-6 м3/моль; Температура кипения tкип(N2O4)=21° С; Температура насыщения; Температура плавления tпл(N2O4)=-11,2° С; Теплота кипения D Hкип(N2O4)=38560 Дж/моль; Теплота плавления D Hпл(N2O4)=14662 Дж/моль; Удельная теплоемкость CP=36,66 Дж/мольЧ К (газ), CP(N2O4)=79,16 Дж/мольЧ К (газ); Энергия Гиббса D Gобр° =52290 Дж/моль (газ), D Gобр° (N2O4)=99680 Дж/моль (газ); Энергия сродства к электрону EA=2,42 эВ; Энтальпия образования D Hобр° =34190 Дж/моль (газ), D Hобр° (N2O4)=11110 Дж/моль (газ); Энтропия S° =240,06 Дж/мольЧ K (газ), S° (N2O4)=304,35 Дж/мольЧ K (газ).
Химические свойства диоксида азота.
Диоксид азота характеризуется высокой активностью.
1. Уголь фосфор и сера сгорают в нем: 10NO2 + 8P ® 5N2 + 4P2O5.
2 .Диоксид серы окисляется до триоксида: 2NO2 + 4SO2® N2 + 4SO3.
3. При взаимодействии диоксида азота с водой образуется смесь азотной и азотистой кислоты: 2NO2 + H2O HNO3 + HNO2.
При растворении в теплой воде образуется азотная кислота и оксид азота: 3NO2 + H2O ® 2HNO3 + NO.
В избытке кислорода образуется только азотная кислота: 4NO2 + 2H2O + O2® 4HNO3.
4 .При взаимодействии со щелочами диоксид азота образует нитраты и нитриты:
5.Выше 150° С диоксид азота начинает разлагаться: 2NO2® 2NO + O2.
6.При комнатной температуре вытесняет оксид углерода из карбонила никеля: 2NO2 + [Ni(CO)4] ® Ni(NO2)2 + 4CO .
Получение диоксида азота.
1.Взаимодействие концентрированной азотной кислоты с медью: Cu + 4HNO3® Cu(NO3)2 + 2NO2+ H2O (рис.3)
2.Разложение нитратов тяжелых металлов, например кристаллического нитрата свинца: 2Pb(NO3)2 (t )® 2PbO + 4NO2+ O2.
3.Взаимодействие оксида азота с кислородом: 2NO + O2® 2NO2.
Применение диоксида азота.
Промежуточный продукт в производстве азотной кислоты. Применяется, как окислитель в жидком ракетном топливе, очиститель нефтепродуктов от сераорганических соединений, катализатор окисления органических соединений, например бензола до фенола, метана до формальдегида.
Диоксид азота как основной загрязнитель атмосферы.
Оксид азота (I), образующийся главным образом естественным путем, безвреден для человека. Он представляет собой бесцветный газ со слабым запахом и сладковатым вкусом. Вдыхание небольших количеств N2O приводит к притуплению болевой чувствительности, вследствие чего этот газ иногда в смеси с кислородом применяют для наркоза. В малых количествах N2O вызывает чувство опьянения (отсюда название «веселящий газ»). Вдыхание чистого N2O быстро вызывает наркотическое состояние и удушье. Оксид азота NO и диоксид азота N2O в атмосфере встречаются вместе, поэтому чаще всего оценивают их совместное воздействие на организм человека. Только вблизи от источника выбросов отмечается высокая концентрация NO. При сгорании топлива в автомобилях и в тепловых электростанциях примерно 90% оксидов азота образуется в форме монооксида азота. Оставшиеся 10% приходятся на диоксид азота. Однако в ходе химических реакций значительная часть NO превращается в N2O — гораздо более опасное соединение. Монооксид азота NO представляет собой бесцветный газ. Он не раздражает дыхательные пути, и поэтому человек может его не почувствовать. При вдыхании NO, как и CO, связывается с гемоглобином. При этом образуется нестойкое нитрозосоединение, которое быстро переходит в метгемоглобин, при этом Fe2+ переходит в Fe3+. Ион Fe3+ не может обратимо связывать O2 и таким образом выходит из процесса переноса кислорода. Концентрация метгемоглобина в крови 60 – 70% считается летальной. Но такое предельное значение может возникнуть только в закрытых помещениях, а на открытом воздухе это невозможно. По мере удаления от источника выброса все большее количество NO превращается в NO2 — бурый, обладающий характерным неприятным запахом газ. Диоксид азота сильно раздражает слизистые оболочки дыхательных путей. Вдыхание ядовитых паров диоксида азота может привести к серьезному отравлению.
Диоксид азота вызывает сенсорные, функциональные и патологические эффекты (рис.4, 5)
Рассмотрим некоторые из них. К сенсорным эффектам можно отнести обонятельные и зрительные реакции организма на воздействие NO2. Даже при малых концентрациях, составляющих всего 0,23 мг/м3, человек ощущает присутствие этого газа. Эта концентрация является порогом обнаружения диоксида азота. Однако способность организма обнаруживать NO2 пропадает после 10 минут вдыхания, но при этом ощущается чувство сухости и першения в горле. Хотя и эти признаки исчезают при продолжительном воздействии газа в концентрации, в 15 раз превышающей порог обнаружения. Таким образом, NO2 ослабляет обоняние. Но диоксид азота воздействует не только на обоняние, но и ослабляет ночное зрение – способность глаза адаптироваться к темноте. Этот эффект же наблюдается при концентрации 0,14 мг/м3, что, соответственно, ниже порога обнаружения. Функциональным эффектом, вызываемым диоксидом азота, является повышенное сопротивление дыхательных путей. Иными словами, NO2 вызывает увеличение усилий, затрачиваемых на дыхание. Эта реакция наблюдалась у здоровых людей при концентрации NO2 всего 0,056 мг/м3, что в четыре раза ниже порога обнаружения. А люди с хроническими заболеваниями легких испытывают затрудненность дыхания уже при концентрации 0,038 мг/м3. Патологические эффекты проявляются в том, что NO2 делает человека более восприимчивым к патогенам, вызывающим болезни дыхательных путей. У людей, подвергшихся воздействию высоких концентраций диоксида азота, чаще наблюдаются катар верхних дыхательных путей, бронхиты, круп и воспаление легких. Кроме того, диоксид азота сам по себе может стать причиной заболеваний дыхательных путей. Попадая в организм человека, NO2 при контакте с влагой образует азотистую и азотную кислоты, которые разъедают стенки альвеол легких. При этом стенки альвеол и кровеносных капилляров становятся настолько проницаемыми, что пропускают сыворотку крови в полость легких. В этой жидкости растворяется вдыхаемый воздух, образуя пену, препятствующую дальнейшему газообмену. Возникает отек легких, который зачастую ведет к летальному исходу. Длительное воздействие оксидов азота вызывает расширение клеток в корешках бронхов (тонких разветвлениях воздушных путей альвеол), ухудшение сопротивляемости легких к бактериям, а также расширение альвеол. Некоторые исследователи считают, что в районах с высоким содержанием в атмосфере диоксида азота наблюдается повышенная смертность от сердечных и раковых заболеваний. Люди, страдающие хроническими заболеваниями дыхательных путей (эмфиземой легких, астмой) и сердечно-сосудистыми болезнями, могут быть более чувствительны к прямым воздействиям NO2. У них легче развиваются осложнения (например, воспаление легких) при кратковременных респираторных инфекциях. Полагают, что около 10 – 15% населения США страдает хроническими респираторными заболеваниями. Исходя из этого, в США установлен стандарт на содержание NO2 на уровне, предохраняющем население от респираторных инфекций. Среднегодовой стандарт качества воздуха в США предусматривает концентрацию NO2 0,1 мг/м3. Нет данных на допустимое содержание NO2 в небольшие промежутки времени (например, среднесуточную концентрацию). В Германии принята максимально допустимая эмиссионная концентрация (МЭК) NO2 — 9 мг/м3. МЭК показывает, какая концентрация вещества выбрасывается тем или иным источником в воздух. Измерение концентрации выбросов производится непосредственно в потоке газов. Но следует знать, что диоксид азота представляет собой опасность для здоровья человека, даже если его концентрация в воздухе меньше МЭК, особенно при длительном действии. Установлены следующие экологические стандарты на содержание оксидов азота в атмосферном воздухе населенных мест: для NO2 максимальная разовая предельно допустимая концентрация (ПДКм.р.) составляет 0,085 мг/м3, а среднесуточная предельно допустимая концентрация (ПДКс.с.) – 0,04 мг/м3; для NO ПДКм.р = 0,4 мг/м3, ПДКс.с = 0,06 мг/м3. Разрушающее воздействие составляющих фотохимического смога на растения было обнаружено раньше, чем подтверждено их влияние на здоровье людей. Оксиды азота NOx могут воздействовать на растения тремя путями: прямым контактом с растениями; через образующиеся в воздухе кислотные осадки; косвенно – путем фотохимического образования таких окислителей, как озон и ПАН. Прямое воздействие NOx на растения определяется визуально по пожелтению или побурению листьев и игл, происходящему в результате окисления хлорофилла. Окисление жирных кислот в растениях, происходящее одновременно с окислением хлорофилла, кроме того, приводит к разрушению мембран и некрозу. Образующаяся при этом в клетках азотистая кислота оказывает мутагенное действие. Отрицательное биологическое воздействие NOx на растения проявляется в обесцвечивании листьев, увядании цветков, прекращении плодоношения и роста. Такое действие объясняется образованием кислот при растворении оксидов азота в межклеточной и внутриклеточной жидкостях. Ботаники считают, что первоначальные симптомы повреждения растений оксидами азота проявляются в беспорядочном распространении обесцвечивающих пятен серо-зеленого оттенка. Эти пятна постепенно грубеют, высыхают и становятся белыми. Оксиды азота токсичны при концентрации 3 млн-1. Для сравнения: сернистый газ вызывает поражение растений при большей концентрации (5 млн-1). Нарушения роста растений при воздействии NO2 наблюдаются при концентрациях 0,35 мг/м3 и выше. Это значение является предельной концентрацией. Опасность повреждения растительности диоксидом азота существует только в больших городах и промышленных районах, где средняя концентрация NO2 составляет 0,2 – 0,3 мг/м3. Растения более устойчивы (по сравнению с человеком) к воздействию чистого диоксида азота. Это объясняется особенностями усвоения NO2, который восстанавливается в хлоропластах и в качестве NH2- группы входит в аминокислоты. При концентрации 0,17 – 0,18 мг/м3 оксиды азота используются растениями в качестве удобрений. Эта способность к метаболизированию NOx человеку не присуща. Разрушительное действие NO2 на растения усиливается в присутствии диоксида серы. Это подтверждено на опытах, проведенных со следующими породами деревьев: тополь черный, береза плакучая, ольха белая, липа мелколистная. Эти газы обладают синергизмом, и в атмосфере зачастую присутствуют вместе. В то время как действие одного диоксида азота многие растения переносят в концентрации до 0,35 мг/м3, в присутствии диоксида серы такое же количество NO2 может нанести им ущерб. Озон и пероксоацилнитраты (ПАН) – сильные окислители. Они оказывают влияние на метаболизм, рост и энергетические процессы в растениях, ингибируя многие ферментативные реакции, например, синтез гликолипидов, полисахаридов стенок клетки, целлюлозы и т.д. Озон и ПАН также влияют на процесс фотосинтеза. Озон значительно токсичнее оксидов азота при действии на растения. Для них он токсичен при концентрации 0,2 млн-1. Чувствительные виды растений уже после часовой обработки озоном при концентрации 0,05 – 0,1 мг/м3 проявляются признаки угнетения (белая или коричневая крапчатость). Озон также изменяет структуру клеточных мембран, вследствие чего можно наблюдать серебристую пятнистость листьев. При воздействии озона также окисляются пигменты и листья обесцвечиваются. На глянцевом слое кожицы листьев и игл проявляются трещины, и лист становится хрупким. Кроме того, в трещинах могут прорастать грибные споры, проникающие затем вглубь листа и разрушающие его. Этот инфекционный процесс является одной из причин гибели лесов. При окислительных процессах в клетке растений может выделяться этилен, вызывающий опадание листьев и игл. Результатом воздействия высоких концентраций озона является штриховая исчерченность листьев. Установлено, что озон влияет на цитрусовые, приводит к чрезмерно раннему созреванию плодов и опаданию их до достижения нормальных размеров. Специальное исследование, проведенное с четырьмя видами сельскохозяйственных растений (соя, кукуруза, пшеница и земляной орех), показало, что загрязнение воздуха озоном приводит к потере урожая. Таким образом, признаки повреждений, вызванных NO2 и O3, визуально диагностируются. Однако следует учитывать, что в естественных условиях, эти газы действуют на растения не по отдельности, а комплексно в сложной смеси с другими загрязнителями, поэтому идентификацию воздействия провести трудно. ПАН становится физиологически активным только при освещении. Фотолитически он распадается на и пероксоацетил-радикал, который окисляя, разрушает пигменты растений. В заключении следует отметить, что фотохимические окислители оказывают наибольшее воздействие на салатные культуры, бобы, свеклу, злаки, виноград и декоративные насаждения. Сначала на листьях образуется водное набухание. Через некоторое время нижние поверхности листьев приобретают серебристый или бронзовый оттенок, а верхние становятся пятнистыми с белым налетом. Затем наступает быстрое увядание и гибель листьев.
Источник