- Оксиды: классификация, получение и химические свойства
- Классификация оксидов
- Получение оксидов
- Химические свойства оксидов
- Химические свойства основных оксидов
- Основные, амфотерные, кислотные оксиды. Способы получения оксидов. Часть 1
- Основные, амфотерные, кислотные оксиды. Способы получения оксидов. Часть 1
- Амфотерные оксиды. Химические свойства, способ получения
Оксиды: классификация, получение и химические свойства
Оксиды — это сложные вещества, состоящие из атомов двух элементов, один из которых — кислород со степенью окисления -2. При этом кислород связан только с менее электроотрицательным элементом.
В зависимости от второго элемента оксиды проявляют разные химические свойства. В школьном курсе оксиды традиционно делят на солеобразующие и несолеобразующие. Некоторые оксиды относят к солеобразным (двойным).
Двойные оксиды — это некоторые оксиды , образованные элементом с разными степенями окисления.
Солеобразующие оксиды делят на основные, амфотерные и кислотные.
Основные оксиды — это оксиды, обладающие характерными основными свойствами. К ним относят оксиды, образованные атомами металлов со степень окисления +1 и +2.
Кислотные оксиды — это оксиды, характеризующиеся кислотными свойствами. К ним относят оксиды, образованные атомами металлов со степенью окисления +5, +6 и +7, а также атомами неметаллов.
Амфотерные оксиды — это оксиды, характеризующиеся и основными, и кислотными свойствами. Это оксиды металлов со степенью окисления +3 и +4, а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO.
Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N2O и SiO.
Классификация оксидов
Получение оксидов
Общие способы получения оксидов:
1. Взаимодействие простых веществ с кислородом :
1.1. Окисление металлов: большинство металлов окисляются кислородом до оксидов с устойчивыми степенями окисления.
Например , алюминий взаимодействует с кислородом с образованием оксида:
Не взаимодействуют с кислородом золото, платина, палладий.
Натрий при окислении кислородом воздуха образует преимущественно пероксид Na2O2,
Калий, цезий, рубидий образуют преимущественно пероксиды состава MeO2:
Примечания : металлы с переменной степенью окисления окисляются кислородом воздуха, как правило, до промежуточной степени окисления (+3):
Железо также горит с образованием железной окалины — оксида железа (II, III):
1.2. Окисление простых веществ-неметаллов.
Как правило, при окислении неметаллов образуется оксид неметалла с высшей степенью окисления, если кислород в избытке, или оксид неметалла с промежуточной степенью окисления, если кислород в недостатке.
Например , фосфор окисляется избытком кислорода до оксида фосфора (V), а под действием недостатка кислорода до оксида фосфора (III):
Но есть некоторые исключения .
Например , сера сгорает только до оксида серы (IV):
Оксид серы (VI) можно получить только окислением оксида серы (IV) в жестких условиях в присутствии катализатора:
2SO2 + O2 = 2SO3
Азот окисляется кислородом только при очень высокой температуре (около 2000 о С), либо под действием электрического разряда, и только до оксида азота (II):
Не окисляется кислородом фтор F2 (сам фтор окисляет кислород). Не взаимодействуют с кислородом прочие галогены (хлор Cl2, бром и др.), инертные газы (гелий He, неон, аргон, криптон).
2. Окисление сложных веществ (бинарных соединений): сульфидов, гидридов, фосфидов и т.д.
При окислении кислородом сложных веществ, состоящих, как правило, из двух элементов, образуется смесь оксидов этих элементов в устойчивых степенях окисления.
Например , при сжигании пирита FeS2 образуются оксид железа (III) и оксид серы (IV):
Сероводород горит с образованием оксида серы (IV) при избытке кислорода и с образованием серы при недостатке кислорода:
А вот аммиак горит с образованием простого вещества N2, т.к. азот реагирует с кислородом только в жестких условиях:
А вот в присутствии катализатора аммиак окисляется кислородом до оксида азота (II):
3. Разложение гидроксидов. Оксиды можно получить также из гидроксидов — кислот или оснований. Некоторые гидроксиды неустойчивы, и самопроизвольную распадаются на оксид и воду; для разложения некоторых других (как правило, нерастворимых в воде) гидроксидов необходимо их нагревать (прокаливать).
гидроксид → оксид + вода
Самопроизвольно разлагаются в водном растворе угольная кислота, сернистая кислота, гидроксид аммония, гидроксиды серебра (I), меди (I):
2AgOH → Ag2O + H2O
2CuOH → Cu2O + H2O
При нагревании разлагаются на оксиды большинство нерастворимых гидроксидов — кремниевая кислота, гидроксиды тяжелых металлов — гидроксид железа (III) и др.:
4. Еще один способ получения оксидов — разложение сложных соединений — солей .
Например , нерастворимые карбонаты и карбонат лития при нагревании разлагаются на оксиды:
Соли, образованные сильными кислотами-окислителями (нитраты, сульфаты, перхлораты и др.), при нагревании, как правило, разлагаются с с изменением степени окисления:
Более подробно про разложение нитратов можно прочитать в статье Окислительно-восстановительные реакции.
Химические свойства оксидов
Значительная часть химических свойств оксидов описывается схемой взаимосвязи основных классов неорганических веществ.
Химические свойства основных оксидов
Подробно про химические свойства оксидов можно прочитать в соответствующих статьях:
Источник
Основные, амфотерные, кислотные оксиды. Способы получения оксидов. Часть 1
Основные, амфотерные, кислотные оксиды. Способы получения оксидов. Часть 1
Мы продолжаем с вами рассматривать оксиды. Давайте вспомним характерные свойства амфотерных, кислотных, основных оксидов и еще рассмотрим частные случаи (вы с ними можете столкнуться при решении второй части заданий ЕГЭ по химии.
Итак, оксиды – это бинарные соединения (состоящие из двух элементов), содержащих атомы кислорода в степени окисления -2. Мы не рассматриваем сейчас понятие сложных оксидов. С ними познакомимся чуть позже в отдельных статьях для тех, кто хочет знать немного больше, чем на сто баллов ЕГЭ по химии.
Классификация оксидов.
Оксиды делятся на солеобразующие и несолеобразующие. Солеобразующие оксиды – оксиды которые в реакциях с кислотами и щелочами образуют соли. Несолеобразующие оксиды – неиндифферентные оксиды. Таким оксидам соли не соответствуют (примеры несолеобразующих оксидов- монооксид азота, монооксид кремния, угарный газ.
Основные оксиды – оксиды, которые вступают в реакцию с кислотами с образованием солей. Основным оксидам соответствуют гидроксиды. Нетрудно догадаться, что к ним относятся оксиды щелочных и щелочноземельных элементов.
Кислотные оксиды – оксиды, при реакции с щелочами образующие соли. К ним относятся диоксид углерода, оксид фосфора. Вообще этим оксидам соответствуют кислоты. К примеру диоксиду углерода соответствует угольная кислота.
Кислотными оксидами являются все солеобразующие оксиды неметаллов и оксиды металлов в высоких степенях окисления. Кстати, кислотные оксиды имеют еще название ангидридов кислот.
Амфотерные оксиды – оксиды проявляющие свойства и кислотных и основных оксидов. Они вступают в реакции с кислотами и с основаниями с образованием солей. Амфотерным оксидам отвечают амфотерные основания. Амфотерными оксидами являются оксиды металлов в средних степенях окисления (в основном +3, +4).
В случае если металл проявляет разные степени окисления и образует несколько оксидов, то чем выше степень окисления металла, тем более кислотный характер имеет этот оксид.
Химические свойства оксидов
Основные оксиды вступаю в реакцию с водой с образованием оснований, при условии, что последние растворимы. Оксиды, которым соответствуют нерастворимые основания с водой не реагируют. Все основные оксиды вступают в реакцию с кислотами с образованием соли и воды.
Ангидриды в реакции с водой образуют кислоты. Большинство кислотных оксидов реагирует с водой. Но если у нас в наличии оксид нерастворимой кислоты, то такой оксид с водой не реагирует. Со щелочами кислотные оксиды реагируют с образованием соли и воды.
Основные оксиды с кислотными оксидами взаимодействуют между собой образуя соли (к примеру оксид магния в реакции с диоксидом углерода дает карбонат магния).
Получение оксидов
Оксиды в основном можно получить реакцией соединения простого вещества с кислородом при высокой температуре.
Еще один способ получения оксидов – разложение соответствующих кислот и оснований, солей (например, гидроксид меди при нагревании разлагается на оксид меди и воду, а нитрат свинца дает оксид свинца, диоксид азота и кислород.)
Еще один способ получения отдельно взятых оксидов – окисление сложных веществ кислородом.
Частные способы получения оксидов
Как уже было указано выше, оксиды, образующиеся сильно эндотермически, можно получить синтезом из простых веществ. Имеет место для элементов первой-четвертой группы.
К примеру, оксид алюминия мы можем получить синтезом из простых веществ. Если этот процесс заморозить – то он протекает экзотермически (вы, конечно же, помните, что такое экзотермическая реакция). Помним, что у алюминия есть один неспаренный электрон в основном состоянии, а возбуждение атома алюминия с переходом одного электрона на свободные орбитали 3р-подуровня трех неспаренных электронов происходит легко. Это и поясняет. Кстати, почему алюминий трехвалентный.
А теперь давайте посмотрим на классическую реакцию, которая имеет важное значение в топливной промышленности – получение оксида углерода
С(т)+СО2(г)=2СО(г) –энтальпия = 173 кДж
Реакция эндотермическая, значит необходимо повышение температуры для ее успешного протекания. При низких температурных режимах равновесие у нас смещается в сторону разложения монооксида углерода на углерод и углекислый газ. Налицо реакция диспропорционирования. Если мы заглянем в справочные таблицы, то увидим, что температуре порядка 400 градусов и давлении равном атмосферному, равновесие смещено в сторону разложения монооксида углерода практически полностью. А вот если температура у нас порядка 1000 градусов по шкале, то равновесие сдвинуто в сторону образования монооксида. А вот в температурном интервале 400-1000 градусов у нас налицо конкуренция прямой и обратной реакций. Что это значит? А то что если мы возьмем смесь чистого монооксида углерода или смесь диоксида углерода с углем в равных молярных долях и выдержать их при заданной температуре в этом интервале, то и в первом и во втором случае мы получим равновесную смесь угля, диоксида и монооксида углерода. При температуре около 700 градусов – соотношение моноокида углерода и диоксида углерода будут идентичными, но если начать медленно охлаждать СО, который получили при нагревании до 1000 градусов, то равновесие у нас сместится в нужном направлении, концентрация СО постепенно снижается и при достижении 400 градусов в системе уже СО не будет. Но! При температуре ниже 300 градусов, то реакция разложения СО протекает крайне медленно, а при комнатной температуре скорость ее почти равна нулю. Отсюда следует верный вывод: если монооксид углерода, полученный при высокой температуре, резко охладить, то удастся его сохранить при комнатной температуре в метастабильном состоянии. На этом и основан промышленный метод получения СО.
Понятное дело, что намного тяжелее получать те кислородные соединения, которые при обычных условиях существуют только за счет замороженности процесса распада. Классика жанра – оксиды азота.
Как вы думаете почему оксиды азота имеют очень низкую стабильность? Это результат исключительной прочности молекулы азота. Только представьте: образование одного моля молекулы азота из свободных атомов азота сопровождается выделением 945 кДж. Именно поэтому смесь 1 моля азота с 1 и моль кислорода энергетически более выгодное состояние, нежели 2 моль оксида азота. Поэтому, ввиду эндотермичности процесса получения двухвалентного оксида азота, последний может быть получен только при очень высокой температуре. Как вариант – в электрической дуге.
На практике это выглядит так: через трубку с электрической дугой, растянутую магнитным полем в виде диска диаметром в несколько метров, продувают воздух. Скорость продувания воздуха должна быть настолько большой, чтобы результирующая газовая смесь быстро проскакивала зону промежуточных температур, где может пройти обратный процесс – превращение монооксида азота в азот и кислород. Ниже восьмиста градусов процесс распада монооксида азота уже практически заморожен и его в принципе можно сохранить. При температуре 3200 градусов доля выхода NO составляет порядка 4%.
Как видите описанный процесс требует огромных затрат энергии, поэтому, большая часть оксидов азота, требуемых для производства азотной кислоты получают в основном другим способом –каталитическим окислением аммиака. В отсутствие катализатора аммиак горит в кислороде с образованием азота и воды.
На поверхности катализатора из платины или ее сплава с палладием идет иной процесс – образование двухвалентного оксида азота и воды. Соединение NO эндотермичное, а вода – экзотермичное. Сам процесс экзотермичный.
NО легко присоединяет кислород с образованием четырехвалентного оксида азота. Последний в свою очередь растворяется в воде и дает смесь азотной и азотистой кислоты. Азотистая кислота крайне неустойчивая и разлагается по уравнению:
Полученный NO2 вновь может реагировать с водой. Если растворение NO2 в воде происходит в присутствии воздуха, то NO окисляется до NO2, который опять вступает в реакцию с водой. В итоге весь четырехвалентный оксид азота превращается в азотную кислоту.
В следующей статье мы с вами рассмотрим еще один пример как один оксид получают из другого оксида того же элемента.
Источник
Амфотерные оксиды. Химические свойства, способ получения
Амфотерные оксиды (имеющие двойственные свойства) – это в большинстве случаев оксиды металлов, которые обладают небольшой электроотрицательностью. В зависимости от внешних условий проявляют либо кислотные, либо оксидные свойства. Образуются эти оксиды переходными металлами, которые обычно проявляют следующие степени окисления: ll, lll, lV.
Примеры амфотерных оксидов: цинка оксид (ZnO), хрома оксид lll (Cr2O3), алюминия оксид (Al2O3), олова оксид ll (SnO), олова оксид lV (SnO2), свинца оксид ll (PbO), свинца оксид lV (PbO2), титана оксид lV (TiO2), марганца оксид lV (MnO2), железа оксид lll (Fe2O3), бериллия оксид (BeO).
Реакции, характерные для амфотерных оксидов:
1. Эти оксиды могут реагировать с сильными кислотами. При этом образуются соли этих же кислот. Реакции такого типа являются проявлением свойств основного типа. Например: ZnO (оксид цинка) + H2SO4 (соляная кислота) → ZnSO4 (сульфат цинка) + H2O (вода).
2. При взаимодействии с сильными щелочами амфотерные оксиды и гидроксиды проявляют кислотные свойства. При этом двойственность свойств (то есть амфотерность) проявляется в образовании двух солей.
В расплаве при реакции с щелочью образуется соль средняя обычная, например:
ZnO (оксид цинка) + 2NaOH (гидроксид натрия) → Na2ZnO2 (обычная средняя соль) + H2O (вода).
Al2О3 (оксид алюминия) + 2NaOH (гидроксид натрия) = 2NaAlO2 + H2O (вода).
2Al(OH)3 (алюминия гидроксид) + 3SO3 (оксид серы) = Al2(SO4)3 (алюминия сульфат) + 3H2O (вода).
В растворе амфотерные оксиды при реакции с щелочью образуют комплексную соль, например: Al2O3 (алюминия оксид) + 2NaOH (гидроксид натрия)+ 3H2O (вода) + 2Na(Al(OH)4) (комплексная соль тетрагидроксоалюминат натрия).
3. Каждый металл любого амфотерного оксида имеет свое координационное число. Например: для цинка (Zn) — 4, для алюминия (Al) — 4 или 6, для хрома (Cr) — 4 (редко) или 6.
4. Амфотерный оксид не реагирует с водой и не растворяется в ней.
Какие реакции доказывают амфотерность металла?
Условно говоря, амфотерный элемент может проявлять свойства как металлов, так и неметаллов. Подобная характерная особенность присутствует у элементов А-групп: Be (бериллий), Ga (галлий), Ge (германий), Sn (олово), Pb, Sb (сурьма), Bi (висмут) и некоторые другие, а также многие элементы Б-групп — это Cr (хром), Mn (марганец), Fe (железо), Zn (цинк), Cd (кадмий) и другие.
Докажем следующими химическими реакциями амфотерность химического элемента цинка (Zn):
1. Zn(OH)2 (цинка гидроксид) + N2O5 (пентаоксид диазота) = Zn(NO3)2 (нитрат цинка) + H2O (вода).
ZnO (оксид цинка) + 2HNO3 (азотная кислота) = Zn(NO3)2 (нитрат цинка) + H2O (вода).
б) Zn(OH)2 (цинка гидроксид) + Na2O (натрия оксид) = Na2ZnO2 (диоксоцинкат натрия)+ H2O (вода).
ZnO (оксид цинка) + 2NaOH (гидроксид натрия) = Na2ZnO2 (диоксоцинкат натрия) + H2O (вода).
В том случае, если элемент с двойственными свойствами в соединении имеет следующие степени окисления, его двойственные (амфотерные) свойства наиболее заметно проявляются в промежуточной стадии окисления.
Как пример можно привести хром (Cr). Этот элемент имеет следующие степени окисления: 3+, 2+, 6+. В случае +3 основные и кислотные свойства выражаются приблизительно в одинаковой степени, в то время как у Cr +2 преобладают основные свойства, а у Cr +6 — кислотные. Вот реакции, доказывающие данное утверждение:
Cr+2 → CrO (оксид хрома +2), Cr(OH)2 → CrSO4;
Cr+3 → Cr2O3 (оксид хрома +3), Cr(OH)3 (хрома гидроксид) → KCrO2 или же хрома сульфат Cr2(SO4)3;
Cr+6 → CrO3 (оксид хрома +6), H2CrO4 → K2CrO4.
В большинстве случаев амфотерные оксиды химических элементов со степенью окисления +3 существуют в мета-форме. Как пример, можно привести: метагидроксид алюминия (хим. формула AlO(OH) и метагидроксид железа (хим. формула FeO(OH)).
Как получают амфотерные оксиды?
1. Наиболее удобный метод их получения заключается в осаждении из водного раствора с использованием гидрата аммиака, то есть слабого основания. Например:
Al(NO3)3 (нитрат алюминия) + 3(H2OxNH3) (водный раствор аммиака гидрата) = Al(OH)3 (амфотерный оксид) + 3NH4NO3 (реакция выполняется при двадцати градусах тепла).
Al(NO3)3 (нитрат алюминия) + 3(H2OxNH3) (водный раствор гидрата аммиака) = AlO(OH) (амфотерный оксид) + 3NH4NO3 + H2O (реакция осуществляется при 80 °C)
При этом в обменной реакции этого типа в случае избытка щелочей гидроксид алюминия не будет осаждаться. Это происходит по причине того, что алюминий переходит в анион из-за своих двойственных свойств: Al(OH)3 (алюминия гидроксид) + OH− (избыток щелочей) = [Al(OH)4]− (анион гидроксида алюминия).
Примеры реакций данного типа:
Al(NO3)3 (нитрат алюминия) + 4NaOH(избыток гидроксида натрия) = 3NaNO3 + Na(Al(OH)4).
ZnSO4 (сульфат цинка) + 4NaOH(избыток гидроксида натрия) = Na2SO4 + Na2(Zn(OH)4).
Соли, которые при этом образуются, относятся к комплексным соединениям. Они включают в себя следующие анионы комплексные: (Al(OH)4)− и еще (Zn(OH)4)2−. Вот так называются эти соли: Na(Al(OH)4) — натрия тетрагидроксоалюминат, Na2(Zn(OH)4) — натрия тетрагидроксоцинкат. Продукты взаимодействия алюминиевых или цинковых оксидов с щелочью твердой называются по-другому: NaAlO2 — натрия диоксоалюминат и Na2ZnO2 — натрия диоксоцинкат.
Источник