- Решение системы линейных уравнений методом подстановки
- Алгоритм решения системы линейных уравнений методом подстановки
- Примеры
- Алгоритм решения систем уравнений методом подстановки и сложения .Алгебра 7 класс. тренажёр по алгебре (7 класс) на тему
- Скачать:
- Предварительный просмотр:
- Предварительный просмотр:
- По теме: методические разработки, презентации и конспекты
- Системы уравнений
- Как решить систему уравнений
- Способ подстановки или «железобетонный» метод
- Способ сложения
- Пример решения системы уравнения способом подстановки
- Пример решения системы уравнения способом сложения
Решение системы линейных уравнений методом подстановки
Алгоритм решения системы линейных уравнений методом подстановки
- Из любого уравнения системы выразить одну переменную через другую.
- Подставить во второе уравнение системы вместо переменной выражение, полученное на первом шаге.
- Решить второе уравнение относительно выраженной переменной.
- Подставить найденное значение переменной в выражение, полученное на первом шаге.
- Найти значение второй переменой.
- Записать ответ в виде упорядоченной пары найденных значений переменных.
Из второго уравнения выражаем y:
Подставляем выражение для y в первое уравнение:
Шаг 3 Решаем первое уравнение:
Подставляем значение x в выражение для y:
В последовательной записи:
$$ <\left\< \begin
Примеры
Пример 1. Решите систему уравнений методом подстановки:
$ а) <\left\< \begin
$ \Rightarrow <\left\< \begin
$ б) <\left\< \begin
$\Rightarrow <\left\< \begin
$ в) <\left\< \begin
$ \Rightarrow <\left\< \begin
$ г) <\left\< \begin
$ \Rightarrow <\left\< \begin
Пример 2. Найдите решение системы уравнений:
$а) <\left\< \begin
$\Rightarrow <\left\< \begin
$ в) <\left\< \begin
$ \Rightarrow <\left\< \begin
$ \Rightarrow <\left\< \begin
$ г) <\left\< \begin
$$ \Rightarrow <\left\< \begin
$$ \Rightarrow <\left\< \begin
Пример 3*. Найдите решение системы уравнений:
Перепишем систему и найдём решение для новых переменных:
$$ <\left\< \begin
Источник
Алгоритм решения систем уравнений методом подстановки и сложения .Алгебра 7 класс.
тренажёр по алгебре (7 класс) на тему
Алгоритм решения систем уравнений методом подстановки и сложения .Алгебра 7 класс.Подробное пошаговое описание работы для слабоуспевающих учащихся с тренировочными заданиями.
Скачать:
Вложение | Размер |
---|---|
sistemy_uravneniy.metod_podstanovki.docx | 18.82 КБ |
sistemy_uravneniy.metod_slozheniya.docx | 18.84 КБ |
Предварительный просмотр:
Образец решения системы уравнений методом подстановки
АЛГОРИТМ (последовательность шагов при работе)
Выразить из первого уравнения у через х, т.е.перенести 3х в другую часть с противоположным знаком ( т.к. у записан в уравнении без числа(коэффициента)). Получится у = 7 – 3х
у = 7 – 3х
Выделить в рамочку выраженную переменную у . Написать её в той же строчке в системе уравнений.
у = 7 – 3х
— 5х + 2(7 – 3х) = 3
Подставить во второе уравнение вместо у выражение ( 7 – 3х), взяв его в скобки !
Приготовить знак системы уравнений и место для будущих ответов х у
-5х + 2·(7 – 3х) = 3
«Выйти из системы» и решить отдельно только уравнение с одной переменной х : 1) раскрыть скобки, умножив число перед скобкой на всё что в скобках;
-5х + 14 -6х = 3
2) Перенести число 14 в правую часть уравнения с противоположным знаком, т.е. сделать «сортировку» — буквы к буквам, числа к числам.
3) Посчитать значение в левой и правой части уравнения
4) Вычислить х как неизвестный множитель, вспомнив простой пример 2 · 3 = 6
Заполнить место в системе уравнений для х
у = 7 – 3х = 7 — 3·1 = 7-3 = 4
Найти значение второй переменной у
Заполнить место в системе уравнений для у
Записать ответ в виде координат точки (х;у)
Решить систему уравнений методом подстановки
выбирая удобную переменную для её выражения, когда она записана без числа.
№1. у – 2х = 1 №4. 2х + у = 12
6х – у = 7 7х – 2у = 31
№2. х + у =6 №5. 4х – у = 11
3х – 5у = 2 6х – 2у = 13
№3. 7х – 3у = 13 №6. 8у – х = 4
х – 2у = 5 2х – 21у = 2
Карточка составлена учителем математики Головлянициной Лидией Вадимовной
Предварительный просмотр:
Рассмотрим коэффициенты перед х и у. Удобно сделать перед переменной у противоположные коэффициенты 2 и -2.
4х + у = 3 |·2
Для этого умножим правую и левую часть первого уравнения на 2, а второе уравнение оставим без изменения.
8 х + 2 у = 6
6у – 2у = 1
Поставим знак «+» между уравнениями слева и проведем черту,
как при сложении столбиком по разрядам.
8 х + 2 у = 6
6х – 2у = 1
Сложим подобные 8х и 6х получим 14х .Запишем это число под чертой. Подобные 2у и -2у взаимно уничтожаются и зачёркиваются. Справа (после равно) складываем числа 6 и 1 и результат записываем под чертой.
Находим х по правилу нахождения неизвестного множителя.
Теперь осталось вычислить у . Выбираем и записываем то уравнение из системы, где у стоит без коэффициента, т.е. коэффициент равен 1 .
Подставить вместо х значение 0,5. Решить уравнение, сделав перенос числа 2 в правую часть с противоположным знаком.
Ответ: х = 0,5; у = 1
Пользуясь этим алгоритмом, решите системы уравнений:
- 3х – у = 7
- 2х + 3у = 1 Карточка составлена учителем математики Головлянициной Лидией Вадимовной
По теме: методические разработки, презентации и конспекты
Решение систем уравнений методом подстановки 7 класс
Решение систем уравнений методом подстановки 7 класс.
Открытый урок по математике в 7 классе с применением ИКТ «Решение систем уравнений методом алгебраического сложения»
Урок-путешествие «Решение систем линейных уравнений методом алгебраического сложения» с применением ИКТ в 7 классе учебник А.Г. Мордкович.
Решение систем уравнений (метод подстановки)
УНЗ представлен в виде межпредметного урока, интегрированного урока, метапредметного урока (материал находится в разработке).
Урок алгебры 7 класс Решение систем уравнений методом подстановки
Тип урока: урок рефлексии.Технология: урок разработан в системе традиционного обучения с опорой на технологию деятельностного метода.Цель урока: создать условия для повторения и закрепления алгоритма .
Урок на тему «Решение систем уравнений способом подстановки и способом сложения».
Урок изучения новой темы в компетентностно- констектной модели обучения и воспитания (первый этап всей изучаемой темы).
План-конспект урока “Решение систем уравнений” (способ подстановки и способ сложения)
Приводится план-конспект урока алгебры в 9 классе.
Презентации по теме «Системы двух линейных уравнений», «Метод подстановки для решения систем уравнений», «Метод сложения для решения систем уравнений» .
Презентации проедполагает использование при проведении онлайн урока по теме «Системы двух линейных уравнений», «Метод подстановки для решения систем уравнений», «Метод сложени.
Источник
Системы уравнений
Прежде чем перейти к разбору как решать системы уравнений, давайте разберёмся, что называют системой уравнений с двумя неизвестными.
Системой уравнений называют два уравнения с двумя неизвестными (чаще всего неизвестные в них называют « x » и « y »), которые объединены в общую систему фигурной скобкой.
Например, система уравнений может быть задана следующим образом.
x + 5y = 7 |
3x − 2y = 4 |
Чтобы решить систему уравнений, нужно найти и « x », и « y ».
Как решить систему уравнений
Существуют два основных способа решения систем уравнений. Рассмотрим оба способа решения.
Способ подстановки
или
«железобетонный» метод
Первый способ решения системы уравнений называют способом подстановки или «железобетонным».
Название «железобетонный» метод получил из-за того, что с помощью этого метода практически всегда можно решить систему уравнений. Другими словами, если у вас не получается решить систему уравнений, всегда пробуйте решить её методом подстановки.
Разберем способ подстановки на примере.
x + 5y = 7 |
3x − 2y = 4 |
Выразим из первого уравнения « x + 5y = 7 » неизвестное « x ».
Чтобы выразить неизвестное, нужно выполнить два условия:
- перенести неизвестное, которое хотим выразить, в левую часть уравнения;
- разделить и левую и правую часть уравнения на нужное число так, чтобы коэффициент при неизвестном стал равным единице.
Перенесём в первом уравнении « x + 5 y = 7 » всё что содержит « x » в левую часть, а остальное в правую часть по правилу переносу.
При « x » стоит коэффициент равный единице, поэтому дополнительно делить уравнение на число не требуется.
x = 7 − 5y |
3x − 2y = 4 |
Теперь, вместо « x » подставим во второе уравнение полученное выражение
« x = 7 − 5y » из первого уравнения.
x = 7 − 5y |
3(7 − 5y) − 2y = 4 |
Подставив вместо « x » выражение « (7 − 5y) » во второе уравнение, мы получили обычное линейное уравнение с одним неизвестным « y ». Решим его по правилам решения линейных уравнений.
Чтобы каждый раз не писать всю систему уравнений заново, решим полученное уравнение « 3(7 − 5y) − 2y = 4 » отдельно. Вынесем его решение отдельно с помощью обозначения звездочка (*) .
x = 7 − 5y |
3(7 − 5y) − 2y = 4 (*) |
Мы нашли, что « y = 1 ». Вернемся к первому уравнению « x = 7 − 5y » и вместо « y » подставим в него полученное числовое значение. Таким образом можно найти « x ». Запишем в ответ оба полученных значения.
x = 7 − 5y |
y = 1 |
x = 7 − 5 · 1 |
y = 1 |
x = 2 |
y = 1 |
Ответ: x = 2; y = 1
Способ сложения
Рассмотрим другой способ решения системы уравнений. Метод называется способ сложения. Вернемся к нашей системе уравнений еще раз.
x + 5y = 7 |
3x − 2y = 4 |
По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное.
Давайте сейчас сложим уравнения системы и посмотрим, что из этого выйдет.
При сложения уравнений системы левая часть первого уравнения полностью складывается с левой частью второго уравнения, а правая часть полностью складывается с правой частью.
x + 5y = 7 | (x + 5y) + (3x − 2y) = 7 + 4 |
+ => | x + 5y + 3x − 2y = 11 |
3x − 2y = 4 | 4x + 3y = 11 |
При сложении уравнений мы получили уравнение « 4x + 3y = 11 ». По сути, сложение уравнений в исходном виде нам ничего не дало, так как в полученном уравнении мы по прежнему имеем оба неизвестных.
Вернемся снова к исходной системе уравнений.
x + 5y = 7 |
3x − 2y = 4 |
Чтобы при сложении неизвестное « x » взаимноуничтожилось, нужно сделать так, чтобы в первом уравнении при « x » стоял коэффициент « −3 ».
Для этого умножим первое уравнение на « −3 ».
При умножении уравнения на число, на это число умножается каждый член уравнения.
x + 5y = 7 | ·(−3) |
3x − 2y = 4 |
x · (−3) + 5y · (−3) = 7 · (−3) |
3x − 2y = 4 |
−3x −15y = −21 |
3x − 2y = 4 |
Теперь сложим уравнения.
−3x −15y = −21 | (−3x −15y ) + (3x − 2y) = −21 + 4 |
+ => | − 3x − 15y + 3x − 2y = −21 + 4 |
3x − 2y = 4 | −17y = −17 |:(−17) |
y = 1 |
Мы нашли « y = 1 ». Вернемся к первому уравнению и подставим вместо « y » полученное числовое значение и найдем « x ».
x = 7 − 5y |
y = 1 |
x = 7 − 5 · 1 |
y = 1 |
x = 2 |
y = 1 |
Ответ: x = 2; y = 1
Пример решения системы уравнения
способом подстановки
Выразим из первого уравнения « x ».
x = 17 + 3y |
x − 2y = −13 |
Подставим вместо « x » во второе уравнение полученное выражение.
x = 17 + 3y |
(17 + 3y) − 2y = −13 (*) |
Подставим в первое уравнение полученное числовое значение « y = −30 » и найдем « x ».
x = 17 + 3y |
y = −30 |
x = 17 + 3 · (−30) |
y = −30 |
x = 17 −90 |
y = −30 |
x = −73 |
y = −30 |
Ответ: x = −73; y = −30
Пример решения системы уравнения
способом сложения
Рассмотрим систему уравнений.
3(x − y) + 5x = 2(3x − 2) |
4x − 2(x + y) = 4 − 3y |
Раскроем скобки и упростим выражения в обоих уравнениях.
3x − 3y + 5x = 6x − 4 |
4x − 2x − 2y = 4 − 3y |
8x − 3y = 6x − 4 |
2x −2y = 4 − 3y |
8x − 3y − 6x = −4 |
2x −2y + 3y = 4 |
2x − 3y = −4 |
2x + y = 4 |
Мы видим, что в обоих уравнениях есть « 2x ». Наша задача, чтобы при сложении уравнений « 2x » взаимноуничтожились и в полученном уравнении осталось только « y ».
Для этого достаточно умножить первое уравнение на « −1 ».
2x − 3y = −4 | ·(−1) |
2x + y = 4 |
2x · (−1) − 3y · (−1) = −4 · (−1) |
2x + y = 4 |
−2x + 3y = 4 |
2x + y = 4 |
Теперь при сложении уравнений у нас останется только « y » в уравнении.
−2x + 3y = 4 | (−2x + 3y ) + (2x + y) = 4 + 4 |
+ => | − 2x + 3y + 2x + y = 4 + 4 |
2x + y = 4 | 4y = 8 | :4 |
y = 2 |
Подставим в первое уравнение полученное числовое значение « y = 2 » и найдем « x ».
Источник