- Принцип работы и схема подключения теплового реле
- Устройство и принцип работы
- Схема подключения теплового реле – принцип работы, регулировки и маркировка
- Содержание статьи
- Основные характеристики тепловых реле
- Устройство и принцип работы тепловых реле
- Виды тепловых реле
- Схема подключения теплового реле
- Регулировка теплового реле
- Маркировка тепловых реле
- Подключение теплового реле. Схема с магнитным пускателем.
- Контакты теплового реле.
- Установка теплового реле.
Принцип работы и схема подключения теплового реле
Защита электродвигателей, магнитных пускателей и прочей аппаратуры от нагрузок, вызывающих перегрев, осуществляется при помощи специальных устройств тепловой защиты. Для того чтобы осуществить правильный выбор модели тепловой защиты, нужно знать ее принцип работы, устройство, а также основные критерии выбора.
Устройство и принцип работы
Термореле (ТР) предназначено для обеспечения защиты электродвигателей от перегрева и преждевременного выхода из строя. При долговременном запуске электродвигатель подвержен токовым перегрузкам, т.к. во время пуска происходит потребление семикратного значения тока, приводящего к нагреву обмоток. Номинальный ток (Iн) — сила тока, потребляемая двигателем при работе. Кроме того, ТР увеличивают срок эксплуатации электрооборудования.
Тепловое реле, устройство которого составляют простейшие элементы:
- Термочувствительный элемент.
- Контакт с самовозвратом.
- Контакты.
- Пружина.
- Биметаллический проводник в виде пластины.
- Кнопка.
- Регулятор тока уставки.
Термочувствительный элемент является датчиком температуры, служащий для передачи тепла на биметаллическую пластину или другой элемент тепловой защиты. Контакт с самовозвратом позволяет при нагреве мгновенно разомкнуть цепь питания электрического потребителя для избежания его перегрева.
Пластина состоит из двух видов металла (биметалл), причем один из них обладает высоким температурным коэффициентом расширения (Kр). Они скреплены между собой при помощи сварки или проката при высоких значениях температуры. При нагреве изгибается пластина тепловой защиты в сторону материала с меньшим Kр, а после остывания пластина принимает исходное положение. В основном пластины изготавливаются из инвара (меньшее значение Kр) и немагнитной или хромоникелевой стали (больший Kр).
Кнопка включает ТР, регулятор тока уставки необходим для установки оптимального значения I для потребителя, причем его превышение приведет к срабатыванию ТР.
Принцип действия ТР основан на законе Джоуля-Ленца. Ток представляет собой направленное движение заряженных частиц, которые сталкиваются с атомами кристаллической решетки проводника (эта величина является сопротивление и обозначается R). Это взаимодействие вызывает появление тепловой энергии, получаемой из электрической. Зависимость длительности протекания от температуры проводника определяется по закону Джоуля-Ленца.
Формулировка этого закона следующая: при прохождении I по проводнику количество теплоты Q, выделяемой током, при взаимодействии с атомами кристаллической решетки проводника прямо пропорционально квадрату I, величине R проводника и времени воздействия тока на проводник. Математически можно записать следующим образом: Q = a * I * I * R * t, где a — коэффициент преобразования, I — ток, протекающий через искомый проводник, R — величина сопротивления и t — время протекания I.
При коэффициенте a = 1 результат расчета измеряется в джоулях, а при условии, что a = 0.24, результат измеряется в калориях.
Нагрев биметаллического материала происходит двумя способами. При первом случае I проходит через биметалл, а во втором — через обмотку. Изоляция обмотки замедляет поток тепловой энергии. Термореле нагревается сильнее при высоких значениях I, чем при контакте с термочувствительным элементом. Происходит задержка сигнала срабатывания контактов. В современных моделях ТР используются оба принципа.
Нагрев биметаллической пластины теплового устройства защиты производится при подключенной нагрузке. Комбинированный нагрев позволяет получить устройство с оптимальными характеристиками. Пластина нагревается при помощи тепла, выделяемого I при прохождении через нее, и специальным нагревателем при I нагрузки. Во время нагрева биметаллическая пластина деформируется и воздействует на контакт с самовозвратом.
Источник
Схема подключения теплового реле – принцип работы, регулировки и маркировка
Электродвигатели и прочее электрооборудование в процессе эксплуатации могут испытывать высокие нагрузки, вызывающие их перегрев. Частые перегревы обмоток силовых установок приводят к разрушению изоляционных материалов и значительному сокращению срока службы, поэтому в конструкции таких устройств предусматривают защитное тепловое реле (ТР). Подключениев схему теплового реле обеспечивает обесточивание электрооборудования при возникновении нештатных ситуаций и предотвращает его выход из строя.
Содержание статьи
Основные характеристики тепловых реле
Основные характеристики теплового реле, учитываемые при выборе подходящего варианта:
- Номинальный ток защиты. Выбирается в соответствии с номинальным током нагрузки. Номинальный ток термореле должен быть в полтора раза выше Iном защищаемого двигателя.
- Интервал регулирования установки тока срабатывания.
- Напряжение цепи и характер тока – постоянный или переменный. При выходе напряжения за допустимые пределы термореле выйдет из строя.
- Номенклатура и число вспомогательных контактов управления. Некоторые ТР имеют дополнительные контакты, управляющие функционированием самого теплореле и обслуживаемой нагрузки.
- Мощность коммутации. Важное свойство ТР, которое характеризует выходную мощность нагрузки.
- Граница (порог) срабатывания. Это коэффициент, величина которого зависит от величины Iном. Чаще всего этот коэффициент находится в пределах 1,1-1,5.
- Чувствительность к асимметрии фаз. Этот параметр равен отношению фазы с перекосом к фазе, по которой проходит Iном.
- Класс отключения. Характеризует усредненный период срабатывания устройства.
Устройство и принцип работы тепловых реле
Для защиты электродвигателей и другого электрооборудования чаще всего применяют ТР с биметаллическими пластинами.
В конструкцию биметаллического теплового реле входят:
- Биметаллическая пластина. Изготавливается из двух сплавов, обладающих разными коэффициентами термического расширения. Обычно это инвар (низкий Кр) и хромоникелевая сталь (более высокий Кр). Между собой их сваривают или соединяют прокаткой. Один из этих металлов нагревается быстрее, другой – медленнее. При перегрузке по току часть пластиныс высоким Кр прогибается ко второй частипластины, которая имеет меньший Кр. Такое движение влияетчерез толкатель на группу контактов.
- Регулятор тока установки. С его помощью устанавливают максимальное значение тока, выше которого ТР обесточивает цепь. Ток срабатывания регулируется путем увеличения или уменьшения зазора между основной пластиной и толкателем.
- Электрические контакты. Их подключают к обмоткам магнитного пускателя теплового реле. Обычно в ТР имеются два контакта – нормально замкнутый и нормально разомкнутый. При силовом воздействии биметаллической пластинки контакты меняют свое положение на противоположное.
Нагрев биметаллической пластины происходит по одной из двух схем: непосредственно из-за тока перегруза или косвенно, через отдельный термочувствительный элемент. В одном устройстве могут соединяться оба этих принципа, что значительно повышает его эффективность. При превышении критических величин тока потребителя реле разомкнет цепь и обесточит МП, а следовательно, защищаемое электрооборудование.
На срабатывание релейного элемента может повлиять повышенная температура окружающей среды. Для компенсации этого явления и предотвращения ложных срабатываний в конструкции ТР предусматривают дополнительные биметаллические пластины, которые прогибаются в сторону, противоположную пространственному положению основного элемента.
Виды тепловых реле
Производители предлагают несколько типов ТР, которые отличаются между собой конструктивными особенностями и видом применяемых МП.
- ТРП. Однополюсный коммутационный аппарат, имеющий комбинированный вариант нагрева. Используется в сетях постоянного тока, в которых напряжение не превышает 400 В, для защиты асинхронных двигателей. Устойчив к ударным и вибрационным нагрузкам.
- РТЛ. Защищает электромоторы от затянутого пуска, асимметрии токов, перегрузов, при исчезновении фазы.
- РТТ. Обеспечивает защиту асинхронных трехфазных машин с КЗ ротором от перегрузок, затянутого старта и перекоса фаз.
- ТРН. Используется в электросетях постоянного тока. Служат для контроля пуска электрических установок и рабочего режима двигателя.
- РТИ.Функционирует совместно с автоматическими выключателями или предохранителями.
- РТК. Предназначен для использования в цепях автоматики, контролирует температурный режим в корпусе электрического оборудования.
Перечисленные ТР не защищают электроцепи от короткого замыкания.
Схема подключения теплового реле
Подсоединение ТР к силовым установкам осуществляется в соответствии с инструкцией производителя. В большинстве случаев ТР к защищаемому устройству подключают через нормально замкнутый контакт, который последовательно соединяют с клавишей «стоп». Разомкнутый контакт включает теплозащиту при выходе тока за допустимые значения. Схемы подключения теплового реле в цепь двигателя или другого электрооборудованиямогут быть и другими, в зависимости от присутствия дополнительных устройств.
Стандартная схема подключения теплового реле
Тепловое реле устанавливают и подключают вместе с магнитным пускателем, выполняющим функции включения электрического привода. Возможны варианты, когда тепловое реле устанавливают на DIN-рейку или отдельную панель.
При подключении потребителя в сеть 220 В или 380 В все фазы после магнитного пускателя пропускают через тепловое реле, а затем уже подсоединяют к электродвигателю. При включении пусковой кнопки напряжение электропитания попадает на обмотку МП, который включает электродвигатель. Если ток нагрузки увеличивается до значения, превышающего критическую величину, тепловое реле срабатывает и отключает электродвигатель.
Тепловое реле ТРН имеет всего два входящих подключения. Неподключенный провод фазы в этом случае пускают непосредственно от пускателя к двигателю. Поскольку ток в электродвигателе изменяется пропорционально, допускается контроль только двух из них (любых).
Регулировка теплового реле
Для эффективного выполнения функции отключения электродвигателя или другого обслуживаемого аппарата необходимо правильно отрегулировать настройки ТР таким образом, чтобы вероятность ложных срабатываний была исключена. Настройку рекомендуется осуществлять на специализированном стенде способом фиктивных нагрузок:
- Через термочувствительный элемент пропускают ток для моделирования реальной тепловой нагрузки.
- С помощью таймера определяют время срабатывания. При проведении настройки с помощью контрольного винта при токе 1,5 Iн время срабатывания должно быть не более 2,5 минут, 5-6 Iн – не более 10 секунд.
Маркировка тепловых реле
В маркировке указывается большинство важных характеристик ТР. Пример обозначения: РТЛ-Х1Х2Х3-Х4-Х5А-Х6А-Х7Х8, где
Тепловое реле – эффективный элемент защиты электродвигателей и другого электрооборудования, который выгодно отличается от входного автоматического выключателя тем, что не подвержен ложным срабатываниям при кратковременных скачках тока.
Источник
Подключение теплового реле. Схема с магнитным пускателем.
В этой статье я попробую очень простыми словами объяснить, как подключается и срабатывает тепловое реле, отключая нагрузку. Очень надеюсь, что моя статья ответит на ваш вопрос. И вы поймете основную механику работы этого простого устройства.
Очень важно понимать, что тепловое реле не производит расцепление сети напрямую и не имеет дугогасительных камер.
Всё это работает как своего рода датчик. Когда тепловушка срабатывает, управление идет через разомкнутые и замкнутые контакты. Ниже будет пример схемы. Чаще всего отключение питания производится через группу замкнутых контактов.
Они размыкают цепь катушки магнитного пускателя или других промежуточных реле в случае превышения допустимой температуры. И именно они в свою очередь отключает потребителя.
Выше схема реверса электродвигателя. Как и говорилось ранее, так происходит обесточивание конкретной катушки или группы элементов. А разомкнутые могут замыкать цепь, например, на сигнальные лампочки. А теперь от схемы перейдем к реальной аппаратуре.
Контакты теплового реле.
Чтобы правильно подключить нужно знать некоторые обозначения. Для начала нужно найти на конкретно вашей модели два типа управляющих контактов. Во всём мире принято единое обозначение, но вот расположены они могут быть как и на лицевой стороне, так и ниже.
- NC — нормально замкнутые (от английского «Normal Closed»).
- NO — нормально разомкнутые («Open»).
То есть в нормальном режиме работы замкнутая группа контактов будет пропускать через себя ток дальше по цепи к электродвигателю и прочим элементам. А при ненормальном, когда оно отработает при токовой перегрузке, эти контакты разомкнутся. Тем самым обесточат и защитят технику от критических повреждений.
Нормальный режим работы — цепь замкнута, включена в сеть и находится под напряжением.
С разомкнутыми все также, просто наоборот. Они в большинстве случаев используются для сигнальных лампочек. Но есть ряд и других применений. Например, запускается система аварийного охлаждения.
Установка теплового реле.
Новые тепловухи уже делают с верхними контактами под магнитные пускатели. С тремя металлическими проводниками, торчащими сверху, как показано на фото ниже.
Если же у вас старая теплушка, то просто пропускаем фазы через неё, корпус прикручивается в щиток на специальные крепления. А дальше зависит от того, какая у вас схема. Если взять для примера реверс что был выше, то с выхода катушки провод идет на контакт 95 (NC) и выход 96 на нулевую шину. Вот так вот всё просто.
Надеюсь у вас больше не осталось вопросов как работает это устройство. А с выбором вам поможет определиться другая наша статья — выбор и регулировка теплового реле.
Источник