Способ переработки фольги алюминиевой

Способ переработки алюминиевой фольги

Владельцы патента RU 2336342:

Изобретение относится к области химической технологии и может быть использовано для переработки отходов кашированной алюминиевой фольги. Способ переработки отходов фольги включает их измельчение, обработку раствором химического реагента — 3-15% раствором серной кислоты при 65-90°С в отсутствие контакта с воздухом и с отводом выделяющегося при обработке водорода, разделение продуктов взаимодействия фильтрацией, охлаждение и кристаллизацию жидкой фазы до получения кристаллогидратов сульфата алюминия, при этом массовое соотношение серной кислоты к алюминию, содержащемуся в перерабатываемой массе, составляет (5,4-6):1. Обеспечивается получение целлюлозы, кристаллического восемнадцативодного сульфата алюминия и водорода при взрывобезопасности процесса. 1 з.п. ф-лы.

Изобретение относится к области химической технологии и может быть использовано для переработки отходов кашированной алюминиевой фольги.

Известен способ переработки кашированной алюминиевой фольги, включающий ее обработку раствором щелочи с получением целлюлозы, алюмината натрия и водорода (SU 636308, 1978).

Известен способ переработки отходов кашированной алюминиевой фольги, включающий измельчение и термообработку в бескислородной среде при 500-650°С с получением углеродсодержащей массы и металлического алюминия (RU 2089631, 1997).

Известен способ, согласно которому цинксодержащие отходы подвергают выщелачиванию, в полученный раствор добавляют отходы кашированной алюминиевой фольги, и из раствора осаждают гидроксиды цинка и алюминия (SU 1325016, 1987).

Известен способ переработки отходов фольги с пленочным покрытием путем обработки в парах азотной кислоты с последующим расслоением массы в водной среде (JP 55-48089, 1980).

Недостатком известных способов являются большие потери целлюлозы из отходов.

Наиболее близким к предложенному способу по технической сущности и достигаемому результату, является способ переработки отходов алюминиевой фольги, нанесенной на целлюлозную основу, который предусматривает ее измельчение, обработку раствором ортофосфата натрия при нагревании с выделением водорода на поверхности алюминия, и разделение продуктов взаимодействия с помощью флотации на целлюлозную массу и частицы металлического алюминия (SU 1118706, 1984).

Недостатком известного способа является его взрывоопасность.

Задачей настоящего изобретения является разработка способа переработки, обеспечивающего высокий выход из отходов целлюлозы и товарной соли алюминия и обеспечение взрывобезопасности процесса.

Поставленная задача решается описываемым способом переработки отходов алюминиевой фольги, нанесенной на целлюлозную основу, с получением целлюлозы и алюминиевого продукта, включающим измельчение отходов, обработку раствором химического реагента — 3-15% раствором серной кислоты при повышенной температуре в отсутствии контакта с воздухом с обеспечением выделения и отвода выделившегося водорода, разделение продуктов взаимодействия фильтрацией, охлаждение жидкой фазы и ее кристаллизацию до получения кристаллогидратов сульфата алюминия.

Предпочтительно, обработку серной кислотой осуществляют при 65-90°С.

Предпочтительно, массовое соотношение серной кислоты к алюминию, содержащемуся в перерабатываемой массе, составляет (5,4-6):1.

Предпочтительно, обработку осуществляют в герметизированной емкости, при этом тепло, выделяющееся при обработке, подвергают утилизации и возвращают в процесс для нагрева серной кислоты.

При этом способ переработки фольги обеспечивает получение целлюлозы, кристаллического восемнадцативодного сульфата алюминия и водорода.

Следует отметить, что использование в качестве химического реагента серной кислоты в пределах заявленной концентрации обеспечивает полный перевод алюминия в сульфат алюминия с выделением водорода, при этом отсутствие кислорода воздуха в процессе обеспечивает безопасное протекание с возможностью отвода водорода и его получения в товарных количествах.

Читайте также:  Надзор это способ проверки судебных актов нижестоящих судов

Ниже описан конкретный пример осуществления процесса.

Отходы кашированной фольги подают в ножевую дробилку, где измельчают ее до крупности 0,1-10 мм. Измельченное сырье загружают в емкость. Емкость герметизируют и откачивают из нее воздух. 10%-ную серную кислоты в отдельной емкости разогревают до 80°С и подают в емкость с сырьем. Общее количество поданной серной кислоты составило 5,6 кг на 1 кг алюминия в перерабатываемом сырье. Обработку осуществляют до полного растворения алюминия в кислоте. При растворении выделяется тепло, которое утилизируют и используют для нагрева следующей порции кислоты. Выделяющийся водород отводят через верхний патрубок емкости и заполняют им подготовленный для этой цели баллон. В рабочей емкости образуется суспензия, содержащая раствор сульфата алюминия и волокна целлюлозы. Образовавшуюся суспензию разделяют на фильтр-прессе. Раствор сульфата алюминия перекачивают в отдельную емкость, где осуществляют охлаждение и кристаллизацию соли алюминия в виде Al2(SO4)3·18 Н2O.

Отжатую целлюлозную массу снимают с фильтра. Периодически производят промывку рабочей емкости водой от нерастворившихся частиц.

В результате переработки отходов из 1 тонны алюминия, содержащегося в фольге, получено 12,5 тонн кристаллического сульфата алюминия и 1442 м 3 водорода, которые являются товарными продуктами. Выделенную из отходов целлюлозу можно использовать в производстве бумаги.

1. Способ переработки отходов алюминиевой фольги, нанесенной на целлюлозную основу, с получением целлюлозы и алюминиевого продукта, включающий измельчение отходов, обработку раствором химического реагента при повышенной температуре с обеспечением выделения водорода и разделение продуктов взаимодействия, отличающийся тем, что в качестве раствора химического реагента используют 3-15%-ный раствор серной кислоты, обработку раствором осуществляют при 65-90°С в отсутствие контакта с воздухом и с отводом выделяющегося при обработке водорода, разделение продуктов взаимодействия осуществляют фильтрацией, жидкую фазу охлаждают и подвергают кристаллизации до получения кристаллогидратов сульфата алюминия, при этом массовое соотношение серной кислоты к алюминию, содержащемуся в перерабатываемой массе, составляет (5,4-6):1.

2. Способ по п.1, отличающийся тем, что обработку раствором химического реагента осуществляют в герметизированной емкости, выделяющееся при этом тепло утилизируют и используют для нагрева серной кислоты.

Источник

Способ переработки отходов материалов на основе алюминиевой фольги

Изобретение относится к области химической технологии и может быть использовано преимущественно для получения металлического алюминия из отходов кашированной алюминиевой фольги. Отходы алюминиевой фольги, например, в виде ленты измельчают резанием, загружают в канал печи, устанавливают температуру при термообработке в диапазоне 500 — 650 o C, выдерживают при этой температуре 10 — 15 мин в бескислородной среде (инертные, топочные газы) для карбонизации органической составляющей материала, после чего карбонизат отделяют от фольги, например, стряхиванием, получая целевой продукт — металлический алюминий. Карбонизация может вестись также в расплавах металлов и солей. При температурах ниже 500 o C карбонизация замедляется, что снижает выход целевого продукта. Способ позволяет полностью извлечь алюминий из отходов.

Изобретение относится к области химической технологии и может быть использовано преимущественно для получения металлического алюминия из отходов кашированной алюминиевой фольги.

Получение рекуперативного алюминия стало насущной задачей в связи с тем, что при его извлечении из отходов экономится до 90 95% электроэнергии, необходимой для получения того же количества первичного алюминия, а также отпадает необходимость в добыче и переработке исходного сырья, например бокситов. Кроме того, переработкой промышленных отходов решаются многие экологические проблемы. Необходимость создания способов переработки отходов материалов на основе алюминиевой фольги связана с тем, что переплав, например, пакетированных отходов кашированной и ламинированной фольги для извлечения металла приводит к загазованности атмосферы в результате интенсивного выделения токсичных дымовых газов. Бумага или пластик, склеенные с алюминиевой фольгой, сгорая в плавильных печах, сжигают фольгу. Отделение фольги от каширующих материалов с помощью специальных составов дорогостоящий и трудоемкий процесс.

Читайте также:  Способы исчисления налога кратко

Известен способ переработки отходов кабельной изоляции, представляющей собой алюминиевую фольгу, соединенную с полиэтиленовой пленкой, путем нагрева и отделения полиэтилена от фольги при выходе материала из нагревателя [1] Известный способ отличается трудоемкостью и высоким энергопотреблением.

Известен способ переработки отходов фольги, кашированной различными материалами, путем механического воздействия на материал измельчения до такой степени, что фольга отделяется от каширующего материала, и последующего разделения смеси тонкодисперсных частиц с использованием роторной вихревой мельницы [2] Известный способ позволяет после помола выделить металлический Al в виде тонкодисперсного порошка. Недостатком этого процесса является большая энергоемкость процесса, необходимость контроля взрывобезопасности.

Известный способ может быть принят за прототип, поскольку совпадает с заявляемым способом по существенному признаку измельчению материала при механическом воздействии на него.

Задача, решаемая изобретением, состоит в упрощении способа получения металлического алюминия путем переработки отходов фольги.

Поставленная задача решается тем, что в известном способе переработки отходов материалов на основе алюминиевой фольги, предусматривающем измельчение материала и отделение металлического алюминия, в соответствии с изобретением, измельченный материал подвергают термообработке и карбонизируют в бескислородной среде при температуре 500 650 o C в течение 10 15 мин, после чего отделяют карбонизат от целевого продукта.

Сущность изобретения состоит в том, что при термообработке исходного материала в режиме, установленном авторами экспериментально, удается получить весь содержащийся в фольге Al и дополнительно, как побочный продукт, карбонизат органического материала, пригодный для дальнейшего использования. При этом при температурах ниже 500 o C карбонизация материала замедляется, т. к. не уходят летучие органические вещества, имеющие температуру возгонки в указанном диапазоне, а при температурах, превышающих 650 o C, идет активизация карбонизата, растет доля фольги, вступающей, однако, для получения ценных потребительских свойств у карбонизата (побочного продукта), его нужно активизировать в присутствии кислорода, а это приводит к снижению выхода металлического алюминия, поскольку растет доля алюминиевой фольги, вступающей в реакцию окисления. Время термообработки установлено экспериментально из условия полной карбонизации органического материала. Для получения целевого продукта необходима бескислородная среда (инертные, топочные газы, расплавы солей и металлов хлористый цинк, олово и т.п.), которая исключает окисление алюминия, а также отжиг органической составляющей.

Способ осуществляется следующим образом. Отходы кашированной алюминиевой фольги измельчают на полоски шириной около 1,2 1,5 мм. Полоски в виде рыхлой массы загружают в канал печи или другого устройства (ванна с расплавом и т. п. ), перемещают через зону нагрева, в которой поддерживают рабочую температуру 500 650 o C, общая длительность пребывания материала в печи 10 15 мин. При указанной температуре из материала выделяют летучие органические вещества с температурой возгонки в рабочем диапазоне, газы отделяют, охлаждают, летучие конденсируются и поступают на дальнейшую переработку. Топочные газы после отделения летучих поступают назад в канал печи, а избыток сбрасывается, т.к. необходимо обеспечить небольшой подпор давления внутри канала печи. После термообработки и карбонизации органической составляющей металлический алюминий отделяется в виде полосок, пригодных для дальнейшей переработки. Оксиды алюминия не образуются, восстановительная атмосфера существует в канале печи за счет образования водорода или оксида углерода при наличии исходной влажности или других причин. Металлический алюминий накапливается в бункере, а затем прессуется, например, в гранулы и поступает на переплавку.

Читайте также:  Дезинфекция виды дезинфекция способы проведения дезинфекции средства для проведения дезинфекции

Примеры конкретного выполнения.

1. Получали металлический алюминий из исходного материала кашированной алюминиевой фольги, содержавшей 52 мас. алюминия, остальное бумага, влажность материала 10% Материал измельчили в полоски шириной 1,5 мм и длиной 4 5 мм (по ширине ленты фольги) и загрузили в печь. Нагрев материала производили со скоростью 5 o /мин, по достижении 500 o C нагрев прекратили и выдерживали материал при этой температуре в течение 15 мин, одновременно осуществляя его перемещение к концу печи и стряхивая карбонизат. После окончания термообработки выгрузили целевой продукт в виде полосок фольги. Выход целевого продукта составил 52 мас. выход карбонизата 16 мас. убыль массы произошел за счет угара карбонизата, испарения воды и летучих. Таким образом, получено 100% алюминия, содержащегося в отходах фольги.

2. Получали металлический алюминий, как в примере 1, проводя термообработку и карбонизацию при температуре 580 o C. Выход целевого продукта и карбонизата соответствует результатам примера 1, получено 100% алюминия, содержащегося в отходах фольги.

3. Получали металлический алюминий, как в примере 1, проводя термообработку и карбонизацию при температуре 650 o C. Выход целевого продукта и карбонизата соответствует результатам примера 1, получено 100% алюминия, содержащегося в отходах фольги.

Полученный в примерах карбонизат представлял собой черный порошок различного гранулометрического состава. Учитывая возможность полезного использования карбонизата, например, в качестве сорбента, была исследована его сорбционная емкость для образцов, полученных при разных температурах карбонизации. Так, при температуре карбонизации 500 o C объем сорбционного пространства карбонизата (пример 1) составляет по воде 0,05 см 3 /г и по бензолу 0,90 см 3 /г. Такими же показателями характеризуется образец карбонизата примера 3, полученный при температуре 650 o C, однако меньше, чем у карбонизата, полученного при более высокой температуре и при его активации.

Приведенные примеры показывают, что по предлагаемой технологии переработки отходов материалов на основе алюминиевой фольги можно извлекать полностью алюминий и дополнительно получать карбонизат для последующей переработки в полезный продукт.

Источники информации 1. JP, N 56-157317, B 22 C 29/00. Утилизация отходов кабельной изоляции. Публ. 04.12.81.

2. Рекламный проспект «Ультра Ротор» фирмы «Altenburger Machinen Jasckerieg G-mbH», международная выставка «Химия-87».

Способ переработки отходов на основе алюминиевой фольги, включающий их измельчение, термообработку и отделение металлического алюминия, отличающийся тем, что термообработку осуществляют в бескислородной среде при 500 — 650 o С в течение 10 15 мин с получением углеродсодержащей массы и металлического алюминия.

Источник

Оцените статью
Разные способы