- § 122. Внутреннее строение Солнца и звезд главной последовательности
- Строение Солнца
- Красные гиганты и сверхгиганты
- Белые карлики
- Красные гиганты и сверхгиганты
- Содержание
- Наблюдаемые характеристики красных гигантов
- Происхождение и строение красных гигантов
- «Молодые» и «старые» красные гиганты
- Строение красных гигантов, неустойчивости в их оболочках и потеря ими массы
- Ядерные источники энергии и их связь со строением красных гигантов
- Завершающие стадии эволюции красных гигантов
- Красные гиганты — переменные звёзды
§ 122. Внутреннее строение Солнца и звезд главной последовательности
Строение Солнца
Мы не можем непосредственно заглянуть внутрь Солнца, поэтому представление о его внутреннем строении получаем только на основе теоретического анализа, используя наиболее общие законы физики и такие характеристики Солнца, как масса, радиус, светимость.
Солнце не расширяется и не сжимается, оно находится в гидростатическом равновесии, так как силе гравитации, стремящейся сжать Солнце, препятствует сила газового давления изнутри.
Расчеты показывают, что для поддержания гидростатического равновесия температура в центре Солнца должна быть примерно 15 • 10 6 К. На расстоянии 0,7R температура падает до порядка 10 6 К. Плотность вещества в центре Солнца около 1,5 • 10 5 кг/м 3 , что более чем в 100 раз выше его средней плотности.
Термоядерные реакции протекают в центральной области Солнца радиусом, примерно равным 0,3R. Эта область получила название ядра. Вне ядра температура недостаточна для протекания термоядерных реакций.
Энергия, выделившаяся в ядре Солнца, переносится наружу, к поверхности, двумя способами: лучистым и конвективным переносами. В первом случае энергия переносится излучением; во втором — при механических движениях нагретых масс вещества.
Лучистый перенос энергии происходит в ядре до расстояний (0,6—0,7) R от центра Солнца, далее к поверхности энергия переносится конвекцией. Проявление конвекции наблюдается в виде грануляции в фотосфере. Полное время, которое требуется энергии, выделившейся в ядре, чтобы достигнуть поверхности Солнца, составляет около 10 млн лет. Так что тот свет и тепло, которые согревают и освещают нашу Землю сегодня, были выработаны в термоядерных реакциях в центре Солнца 10 млн лет назад.
Конечно, астрономы ищут способы заглянуть внутрь Солнца и проверить теоретические представления о его строении. На этом пути им на помощь пришли физики, изучающие элементарные частицы. Дело в том, что при термоядерных реакциях синтеза гелия из водорода наряду с выделением энергии происходит рождение элементарных частиц — нейтрино. В отличие от излучения нейтрино практически не задерживается веществом. Возникая в недрах Солнца и распространяясь со скоростью, близкой к скорости света, они через 2 с покидают поверхность Солнца и через 8 мин достигают Земли. Для наблюдений солнечных нейтрино был построен специальный нейтринный телескоп, который в течение многолетних наблюдений и зарегистрировал ожидаемый поток нейтрино от Солнца. Эти наблюдения окончательно подтвердили правильность наших теоретических моделей строения Солнца как звезды. Поэтому мы в полной мере можем использовать полученные результаты для разработки моделей других звезд. Другие звезды главной последовательности по строению во многом похожи на Солнце.
Красные гиганты и сверхгиганты
Отличительной особенностью этих звезд является отсутствие ядерных реакций в самом центре, несмотря на высокие температуры. Ядерные реакции протекают в тонких слоях вокруг плотного центрального ядра. Так как температура звезды уменьшается к поверхности, то в каждом слое идет определенный тип термоядерных реакций. В самых внешних слоях ядра, где температура составляет около 15 • 10 6 К, из водорода образуется гелий; глубже, где температура выше, из гелия образуется углерод; далее из углерода — кислород, и в самых глубоких слоях у очень массивных звезд при термоядерных реакциях образуется железо. Более тяжелые химические элементы образовываться с выделением энергии не могут. Наоборот их образование требует затраты энергии. Итак, в красных гигантах и сверхгигантах формируются слоевые источники энергии и образуется большинство химических элементов вплоть до атомов железа.
Белые карлики
Эти звезды были названы белыми карликами, так как сначала среди них были обнаружены звезды белого цвета, а значительно позже — желтого и других цветов. Размеры их небольшие, всего лишь тысячи и десятки тысяч километров, т. е. сравнимые с размерами Земли. Но их массы близки к массе Солнца, и поэтому их средняя плотность сотни килограммов в кубическом сантиметре. Примером такой звезды служит спутник Сириуса, обозначаемый обычно как Сириус В. У этой звезды спектрального класса А с температурой 9000 К диаметр лишь в 2,5 раза превышает диаметр Земли, а масса равна солнечной, так что средняя плотность превышает 100 кг/см 3 .
Источник
Красные гиганты и сверхгиганты
Красные гиганты и сверхгиганты — звёзды поздних [1] спектральных классов с высокой светимостью и протяжёнными оболочками.
Содержание
Наблюдаемые характеристики красных гигантов
К красным гигантам относят звёзды спектральных классов K и M классов светимости III и I соответственно, то есть с абсолютными звёздными величинами у красных гигантов и MV m у красных сверхгигантов. Температура излучающей поверхности (фотосферы) красных гигантов сравнительно невелика (
) и, соответственно, поток энергии с единицы излучающей площади невелик — в 2—10 раз меньше, чем у Солнца. Однако, светимость таких звёзд может достигать 10 5 − 10 6 LSol , так как красные гиганты и сверхгиганты имеют очень большие радиусы. Характерные радиусы красных гигантов и сверхгигантов — от 100 до 800 солнечных радиусов.
Спектры красных гигантов характеризуются наличием молекулярных полос поглощения, максимум излучения приходится на красную и инфракрасную области спектра.
Происхождение и строение красных гигантов
«Молодые» и «старые» красные гиганты
Звёзды в процессе своей эволюции могут достигать поздних спектральных классов и высоких светимостей на двух этапах своего развития: на стадии звёздообразования и поздних стадиях эволюции. Стадия, на которой молодые звёзды наблюдаются как красные гиганты, зависит от их массы — этот этап длится от
10 3 лет для массивных звёзд с массами и до
10 8 лет для маломассивных звёзд с . В это время звезда излучает за счёт гравитационной энергии, выделяющейся при сжатии. По мере сжатия температура поверхности таких звёзд растёт, но, вследствие уменьшения размеров и площади излучающей поверхности, падает светимость. В конечном итоге, в их ядрах начинается реакция термоядерного синтеза гелия из водорода, и молодая звезда выходит на главную последовательность.
На поздних стадиях эволюции звёзд, после выгорания водорода в их недрах, звёзды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов диаграммы Герцшпрунга — Рассела: этот этап длится
10% от времени «активной» жизни звёзд, то есть этапов их эволюции, в ходе которых в звёздных недрах идут реакции нуклеосинтеза. Звёзды главной последовательности с массами превращаются сначала в красные гиганты, а затем — в красные сверхгиганты; звёзды с
— непосредственно в красные сверхгиганты. Перед тем, как перейти в стадию красного гиганта, звезда проходит промежуточную стадию — стадию субгиганта. Субгигант — это звезда, в ядре которой уже прекратились термоядерные реакции с участием водорода, но горение гелия ещё не началось, так как ядро недостаточно разогрето.
В современной астрофизике термин красные гиганты относится, как правило, к таким проэволюционировавшим звёздам, сошедшим с главной последовательности; молодые звёзды, не вышедшие на главную последовательность, обобщённо называют протозвёздами или по конкретному типу, например, звёзды типа T Тельца.
Строение красных гигантов, неустойчивости в их оболочках и потеря ими массы
И «молодые», и «старые» красные гиганты имеют схожие наблюдаемые характеристики, объясняющиеся сходством их внутреннего строения — все они имеют горячее плотное ядро и очень разрежённую и протяжённую оболочку (англ. envelope ). Наличие протяжённой и относительно холодной оболочки приводит к интенсивному звёздному ветру: потери массы при таком истечении вещества достигают в год. Интенсивному звёздному ветру способствует несколько факторов:
- Высокая светимость красных гигантов в сочетании с огромной протяжённостью их атмосфер (радиусы в 10 2 − 10 3 RSol ) приводит к тому, что на границах их фотосфердавление излучения на газовую и пылевую компоненты их оболочек становится соизмеримым с силами тяготения, что вызывает вынос вещества.
- Ионизация областей оболочек, лежащих ниже фотосферы, делает их существенно непрозрачными для электромагнитного излучения, что приводит к конвекционному механизму переноса энергии. Аналогичную природу имеет солнечная активность, в случае же красных гигантов мощность конвективных потоков должна значительно превосходить солнечную.
- В протяжённых звёздных оболочках могут развиваться неустойчивости, приводящие к сильным колебательным процессам, сопровождающимся изменением теплового режима звезды. На Рис. 2 чётко заметны волны плотности выброшенной звездой материи, которые могут быть следствиями таких колебаний. Периодические колебания оболочек во многих случаях приобретают заметный с огромных расстояний масштаб: многие «старые» красные гиганты являются пульсационными переменными (см. ниже), переменными являются также и некоторые «молодые красные гиганты» типа T Тельца.
Конвективные механизмы могут приводить к выносу в атмосферу звезды продуктов нуклеосинтеза из внутренних ядерных источников, что является причиной наблюдаемых аномалий химического состава красных гигантов, в частности, повышенного содержания углерода.
Ядерные источники энергии и их связь со строением красных гигантов
В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода — нуклеосинтез с образованием гелия (см. цикл Бете). Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатию и, соответственно, к повышению температуры и плотности в её ядре. Рост температуры и плотности в звёздном ядре ведёт к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов.
При температурах порядка 10 8 K кинетическая энергия ядер гелия становится достаточно высокой для преодоления кулоновского барьера: два ядра гелия (альфа-частицы) могут сливаться с образованием нестабильного изотопа бериллия Be 8 :
He 4 + He 4 = Be 8
Большая часть Be 8 снова распадается на две альфа-частицы, но при столкновении Be 8 с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода C 12 :
Be 8 + He 4 = C 12 + 7,3 МэВ.
Несмотря на весьма низкую равновесную концентрацию Be 8 (например, при температуре
10 8 K отношение концентраций Be 8 /He 4
10 −10 ), скорость тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно высока: так, для диапазона температур
1—2·10 8 K энерговыделение :
где — парциальная концентрация гелия в ядре (в рассматриваемом случае «выгорания» водорода близка к единице).
Начало тройной гелиевой реакции в вырожденных ядрах маломассивных (масса до
2,25 солнечных) красных гигантов имеет взрывоподобный характер, что приводит к резкому, но очень кратковременному (
10 4 —10 5 лет) росту их светимости — гелиевой вспышке.
Следует, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем цикл Бете: в пересчёте на единицу массы энерговыделение при «горении» гелия более чем в 10 раз ниже, чем при «горении» водорода. По мере выгорания гелия и исчерпания источника энергии в ядре возможны и более сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются все более высокие температуры и, во-вторых, энерговыделение на единицу массы в таких реакциях падает по мере роста массовых чисел ядер, вступающих в реакцию.
Дополнительным фактором, по-видимому, влияющим на эволюцию ядер красных гигантов, является сочетание высокой температурной чувствительности тройной гелиевой реакции (см. Рис. 3) и реакций синтеза более тяжёлых ядер, с механизмом нейтринного охлаждения: при высоких температурах и давлениях возможно рассеяние фотонов на электронах с образованием нейтрино-антинейтринных пар, которые свободно уносят энергию из ядра: звезда для них прозрачна. Скорость такого объёмного нейтринного охлаждения, в отличие от классического поверхностного фотонного охлаждения, не лимитирована процессами передачи энергии из недр звезды к её фотосфере. В результате реакции нуклеосинтеза в ядре звезды достигается новое равновесие, характеризующееся одинаковой температурой ядра: образуется изотермическое ядро (Рис. 1).
Завершающие стадии эволюции красных гигантов
Масса | Ядерные реакции | Процессы в ходе эволюции | Остаток |
---|---|---|---|
0,08—2,5 | Водородный слоевой источник | Образуется вырожденное гелиевое ядро, оболочка рассеивается | He-белый карлик с массой до 0,5 солнечных |
2,5—8 | Двойной слоевой источник |
|
10 4 лет
- СО-белый карлик массой 0,6—0,7 солнечных, Планетарная туманность
- Звезда полностью рассеивается при вспышке
10 4 лет наблюдается как остаток сверхновой
Красные гиганты — переменные звёзды
- Радиально пульсирующие долгопериодические переменные типа Ми́ры — омикрона Кита (Long Period Variables M, Omicron Ceti-type) — гиганты спектрального класса М с периодом от 80 до более 1000 дней и вариациями блеска от 2.5 m до 11 m , в спектрах присутствуют эмиссионные линии.
- SR — полуправильные пульсирующие переменные гиганты спектрального класса М (типа Z UMa) с периодом от 20 дней до нескольких лет и вариациями блеска
3 m ,
Источник