Способ передвижения простейших жгутики

Содержание
  1. Движения простейших
  2. Читайте также
  3. Движения и образ жизни
  4. О водорослях и простейших
  5. § 2. Тропизмы и таксисы простейших
  6. В чем состоит главное отличие движения Венеры и Урана от движения остальных планет?
  7. ДВИЖЕНИЯ
  8. Движения
  9. 9.2. Движения растений
  10. Движения
  11. Глава 15 Привычные движения
  12. Инстинктивные движения
  13. Пластичность поведения простейших
  14. Движения
  15. Движения
  16. 2. Система органов движения
  17. Движения глаз во сне?
  18. Органоиды движения: функции и строение, особенности движения простейших
  19. Строение и функции органоидов движения
  20. Особенности движения простейших
  21. Эвглена зелёная
  22. Инфузория туфелька
  23. Амеба обыкновенная
  24. Жгутики
  25. Содержание:
  26. Типы жгутикования у бактерий
  27. Типы бактерий в зависимости от расположения и числа жгутиков
  28. Структура жгутика
  29. Структура жгутика грамотрицательных бактерий
  30. Химический состав жгутиков
  31. Движение бактерий при помощи жгутиков

Движения простейших

Движения простейших отличаются большим разнообразием, причем в этом типе простейших животных встречаются способы локомоции, которые совершенно отсутствуют у многоклеточных животных. Это своеобразный способ передвижения амеб при помощи «переливания» плазмы из одного участка тела в другой. Другие представители простейших, грегарины, передвигаются своеобразным «реактивным» способом — путем выделения из заднего конца тела слизи, «толкающей» животное вперед. Существуют и простейшие, пассивно парящие в воде.

Однако большинство простейших передвигаются активно с помощью особых структур, производящих ритмичные движения, — жгутиков или ресничек. Эти эффекторы представляют собой плазматические выросты, совершающие колебательные, вращательные или волнообразные движения. Жгутиками, длинными волосовидными выростами обладают уже упомянутые примитивные простейшие, получившие свое название благодаря этому образованию. С помощью жгутиков тело животного (например, эвглены) приводится в спиралевидное поступательное движение. Некоторые морские жгутиковые, по данным норвежского ученого И. Трондсена, вращаются при движении вокруг оси со скоростью до 10 оборотов в секунду, а скорость поступательного движения может достигнуть 370 микрон в секунду. Другие морские жгутиковые (из числа динофлягеллят) развивают скорость от 14 до 120 микрон в секунду и больше. Более сложным эффекторным аппаратом являются реснички, покрывающие в большом числе тело инфузории. Как правило, реснитчатый покров располагается неравномерно, реснички достигают на разных участках тела различной длины, образуют кольцевидные уплотнения (мембранеллы) и т. п.

Примером такой сложной дифференциации могут служить инфузории из рода стилонихия. Своеобразные органеллы этих животных позволяют им не только плавать, но и «бегать» по твердому субстрату, причем как вперед, так и назад. Установлено, что координация этих способов и направлений локомоции, как и их «переключение», осуществляется специальными механизмами, локализованными в трех центрах и двух осях градиентов возбуждения в цитоплазме.

Жгутики и реснички приводятся в движение сокращениями миофибрилл, которые образуют волоконца, мионемы, соответствующие мышцам многоклеточных животных. У большинства простейших они являются основным двигательным аппаратом, причем имеются они даже у наиболее примитивных представителей типа жгутиковых. Мионемы располагаются в строгом порядке, чаще всего в виде колец, продольных нитей или лент, а у высших представителей и в виде специализированных систем. Так, у инфузории Caloscolex имеются специальные системы мионем околоротовых мембранелл, глотки, задней кишки, ряд ретракторов отдельных участков тела и т. д.

Интересно отметить, что, как правило, мионемы имеют гомогенную структуру, что отвечает гладкой мускулатуре многоклеточных животных, однако иногда встречаются и поперечно исчерченные мионемы, сопоставимые с поперечно-полосатой мускулатурой высших животных. Все сократительные волоконца служат для выполнения быстрых движений отдельных эффекторов (у простейших — игловидных выростов, щупальцевидных образований и т. п.). Сложные системы мионем позволяют простейшим производить не только простые сократительные движения тела, но и достаточно разнообразные специализированные локомоторные и нелокомоторные движения.

У тех простейших, у которых нет мионем (у амеб, корненожек, споровиков, за одним исключением, и некоторых других простейших), сократительные движения совершаются непосредственно в цитоплазме. Так, при передвижении амебы в наружном слое цитоплазмы, в эктоплазме, происходят подлинные сократительные процессы. Удалось даже установить, что эти явления имеют место всякий раз в «задней» (по отношению к направлению передвижения) части тела амебы.

Таким образом, еще даже до появления специальных эффекторов перемещение животного в пространстве совершается путем сокращений. Именно сократительная функция, носителем которой являются у простейших мионемы, а у многоклеточных мышцы, обеспечивала все разнообразие и всю сложность двигательной активности животных на всех этапах филогенеза.

Читайте также

Движения и образ жизни

Движения и образ жизни Теперь мы обратимся к краткому рассмотрению своеобразного полета и вообще движений, питания, постройки гнезд и других привычек колибри. Здесь мы можем сослаться на наблюдения новейших исследователей, произведенные над колибри на их родине.

Читайте также:  Упразднение это эффективный способ

О водорослях и простейших

О водорослях и простейших В мире микроорганизмов мы можем наблюдать ряд признаков, характерных и для высших организмов. Мы уже знаем, что некоторые грибы по размерам относятся к микроорганизмам, а другие видны невооруженным глазом (например, шляпочные лесные грибы). Тем

§ 2. Тропизмы и таксисы простейших

§ 2. Тропизмы и таксисы простейших Относительно небольшие размеры простейших дают возможность непосредственно использовать рецепторный аппарат мембраны для быстрого изменения поведения. Размер большинства простейших обычно не превышает нескольких миллиметров (рис.

В чем состоит главное отличие движения Венеры и Урана от движения остальных планет?

В чем состоит главное отличие движения Венеры и Урана от движения остальных планет? Все планеты обращаются вокруг Солнца в одном направлении – в том же, в котором вращается вокруг своей оси Солнце. В этом же направлении вращаются почти все планеты и вокруг собственных

ДВИЖЕНИЯ

ДВИЖЕНИЯ Только при наличии хорошего ходового аппарата и выносливости можно использовать физиологические способности собаки для той или иной цели. Движение собаки — ее манеру и легкость движения — очень часто недооценивают при экспертизе, предпочитая судить о

Движения

Движения Когда щенкам два — три дня от роду можно заметить, что они уже достаточно сильные, живые и могут ползать, продвигаясь вперед неуверенными толчками. Сначала они ползают медленно, качаясь и бросая голову из стороны в сторону, как бы стараясь удержать

9.2. Движения растений

9.2. Движения растений Обычно растения движутся путем роста.[181] Этот факт легче осознать, когда видишь их в ускоренной киносъемке: ростки вытягиваются и изгибаются к свету; разветвления корней устремляются вниз, в почву, а верхушки усиков и ползучих стеблей выбрасывают в

Движения

Движения Когда щенкам два — три дня от роду можно заметить, что они уже достаточно сильные, живые и могут ползать, продвигаясь вперед неуверенными толчками. Сначала они ползают медленно, качаясь и бросая голову из стороны в сторону, как бы стараясь удержать

Глава 15 Привычные движения

Глава 15 Привычные движения В действиях кролика, который, выписывая зигзаги, мчится в темноте ночи к своему дому, и маленького мальчика, играющего наизусть музыкальную пьесу, есть что-то общее, и это нечто большее, нежели просто удовлетворение при достижении цели. Оба они

Инстинктивные движения

Инстинктивные движения Стабильные, жесткие инстинктивные движения появляются в раннем постнатальном онтогенезе в настолько «готовом» виде, что долгое время считалось, что они совершенно не развиваются и не нуждаются в индивидуальном упражнении. На самом деле, как мы

Пластичность поведения простейших

Пластичность поведения простейших Как мы видим, и в моторной и в сенсорной сфере поведение достигает у ряда видов простейших известной сложности. Достаточно указать на фобическую реакцию (реакцию испуга) туфельки в вышеописанном примере клинотаксиса: наткнувшись на

Движения

Движения Кольчатые черви обитают в морях и пресноводных водоемах, но некоторые ведут и наземный образ жизни, передвигаясь ползком по субстрату или роясь в рыхлом грунте. Морские черви отчасти пассивно носятся течениями воды как составная часть планктона, но основная

Движения

Движения Огромное разнообразие «экологических ниш», занимаемых насекомыми и другими членистоногими, обусловило, естественно, развитие весьма различных форм приспособления в области строения и поведения этих животных. Наиболее существенным и характерным для эволюции

2. Система органов движения

2. Система органов движения Система органов движения служит для перемещения отдельных частей тела в отношении друг друга и всего организма в пространстве.Систему органов движения образуют костный и мускульный аппараты движения.Костный аппарат движения. Органами

Движения глаз во сне?

Движения глаз во сне? То ли дело быстрые движения глаз! Нет сомнения, что они означают «смотрение» снов. Как это доказать? В ходе экспериментов Клейтман и Демент научились по рассказам о сновидениях, предшествующих пробуждению, угадывать, какие движения глаз можно ожидать

Источник

Органоиды движения: функции и строение, особенности движения простейших

Клетки могут перемещаться при помощи специализированных органоидов, к которым относятся реснички и жгутики. Реснички клеток всегда многочисленны (у простейших их количество исчисляется сотнями и тысячами), а длина составляет 10-15мкм. Жгутиков же чаще всего 1-8, длина их — 20-50мкм.

Читайте также:  Способ обеспечения исполнения обязательств по гражданскому кодексу

Строение и функции органоидов движения

Строение ресничек и жгутиков, как у растительных, так и животных клеток сходно. Под электронным микроскопом обнаружено, что реснички и жгутики это немембранные органоиды, состоящие из микротрубочек. Две из них располагаются в центре, а вокруг них по периферии лежат еще 9 пар микротрубочек. Вся эта структура покрыта цитоплазматической мембраной, являющейся продолжением клеточной мембраны.

Жгутики и реснички обеспечивают не только передвижение клеток в пространстве, но и перемещение различных веществ на поверхности клеток, а также попадание пищевых частиц в клетку. У основания ресничек и жгутиков находятся базальные тельца, которые тоже состоят из микротрубочек.

Предполагают, что базальные тельца являются центром формирования микротрубочек жгутиков и ресничек. Базальные тельца, в свою очередь, нередко происходят из клеточного центра.

Большое количество одноклеточных организмов и некоторые клетки многоклеточных не имеют специальных органоидов движения и передвигаются при помощи псевдоподий (ложноножек), которое получило название амебоидного. В основе его лежит движение молекул особых белков, называемых сократимыми.

Особенности движения простейших

Одноклеточные организмы также способны передвигаться (инфузория туфелька, эвглена зеленая, амеба обыкновенная). Для перемещения в толще воды каждая особь наделена специфическими органоидами. У простейших такими органоидами являются реснички, жгутики, ложноножки.

Эвглена зелёная

Эвглена зелёная — представитель простейших из класса жгутиковых. Тело эвглены веретенообразной формы, удлиненное с заостренным концом. Органоиды движения эвглены зеленой представлены жгутиком, который находится на тупом конце. Жгутики — это тонкие выросты тела, число которых варьирует от одного до десятков.

Механизм движения при помощи жгутика отличается у разных видов. В основном это вращение в виде конуса, вершина которого обращена к телу. Перемещение наиболее эффективно при достижении углом вершины конуса 45°. Скорость колеблется в пределах от 10 до 40 оборотов за секунду. Часто наблюдается помимо вращательного движения жгутика, также его волнообразные покачивания.

Такой характер движения свойствен для одножгутиковых видов. У многожгутиковых нередко жгутики располагаются в одной плоскости и не формируют конуса вращения.

Микроскопическое строение жгутиков довольно сложное. Они окружены тонкой оболочкой, которая является продолжением наружного слоя эктоплазмы — пелликулы. Внутреннее пространство жгутика заполнено цитоплазмой и продольно расположенными нитями — фибриллами.

Периферически расположенные фибриллы отвечают за осуществление движения, а центральные выполняют опорную функцию.

Инфузория туфелька

Передвигается инфузория туфелька за счет ресничек, осуществляя ими волнообразные движения. Направляется вперед тупым концом.

Реснички двигаются в одной плоскости и делают прямой удар после полного выпрямления, а возвратный — в выгнутом положении. Удары идут последовательно один за другим с небольшой задержкой. Во время плаванья, инфузория осуществляет вращательные движения вокруг продольной оси.

Реснички инфузории туфельки

Перемещается туфелька со скоростью до 2,5мм/c. Направленность меняется за счёт перегибов тела. Если на пути будет преграда, то после столкновения инфузория начинает двигаться в противоположную сторону.

Все реснички инфузорииимеют сходное строение с жгутиками эвглены зеленой. Ресничка у основания образует базальное зерно, которое играет важную роль в механизме движения организма.

У некоторых инфузорий реснички соединяются между собой и таким образом позволяют развить большую скорость.

Инфузории относятся к высокоорганизованным простейшим и свою двигательную активность они осуществляют с помощью сокращений. Форма тела простейшего может меняться, а после возвращаться в прежнее состояние. Быстрые сократительные движения возможны благодаря наличию особых волокон — мионем.

Амеба обыкновенная

Амеба — простейшее довольно крупных размеров (до 0,5мм). Форма тела полиподиальная, обусловлена наличием множественных псевдоподий — это выросты с внутренней циркуляцией цитоплазмы.

У амебы обыкновенной псевдоподии еще называют ложноножками. Направляя ложноножки в разные стороны, амёба развивает скорость в 0,2 мм/минуту.

К органоидам движения простейших не относятся цитоплазма, ядро, вакуоли, рибосомы, лизосомы, ЭПР, Аппарат Гольджи.

Источник

Жгутики

Жгутики – нитевидные структуры, расположенные на поверхности клетки и являющиеся органами движения бактериальной клетки [2] [3] .

Содержание:

Жгутики – это необязательный структурный компонент бактериальной клетки. Они могут быть удалены без нарушения метаболизма клетки [2] [3] . Первые сведения о наличии жгутиков у бактерии сообщил в 1838 году немецкий естествоиспытатель Г. Эренбер. В 1897 году немецкий ботаник В. Мигула дал их морфологическое описание [3] . Жгутики у бактерий видны только в электронном микроскопе. В световом микроскопе, без специальной обработки отдельные жгутики увидеть нельзя [1] . В процессе окрашивания бактерий по Граму жгутики не видны [2] .

Читайте также:  Экономическая теория изучает способы производства

Типы жгутикования у бактерий

1. Монотрих; 2. Лофотрих; 3. Амфитрих; 4. Перитрих [1] .

Типы бактерий в зависимости от расположения и числа жгутиков

В зависимости от расположения и числа жгутиков на поверхности клетки различают следующие типы бактерий:

  • монотрихи – имеют только один жгутик (род Caulobacter и род Vibrio);
  • лофотрихи – имеют на одном или на обоих полюсах клетки пучок жгутиков (род Pseudomonas);
  • амфитрихи – имеют по одному жгутику на обоих полюсах клетки (род Spirillum);
  • перитрихи – имеется большое количество жгутиков, располагающихся по всей поверхности клетки (род Erwinia) [1] .

Структура жгутика

Электронно-микроскопические исследования выявляют сложную структурную организацию жгутиков [3] .

Жгутик состоит из трех частей: нити, крюка, базального тельца [1] .

Жгутик закреплен в цитоплазматической мембране и клеточной стенке с помощью базального тельца. В структуру последнего входит стержень и кольца [1] .

Количество колец базального тельца у грамотрицательных и грамположительных бактерий различно [1] .

L и P – наружная пара колец. S и M – внутренняя пара колец [1] .

Кольца жгутика грамотрицательных бактерий закреплены в разных местах:

  • L-кольцо – в наружной мембране клеточной стенки;
  • P-кольцо – в пептидогликановом слое клеточной стенки;
  • S-кольцо – в периплазматическом пространстве клеточной стенки;
  • M-кольцо – в цитоплазматической мембране[1] .

Жгутики грамположительных бактерии характеризуются базальным тельцем более простого строения. В данном случае оно состоит только из внутренней пары колец – S и M, размещенных в цитоплазматической мембране и клеточной стенке [1] .

Структура жгутика грамотрицательных бактерий

1. Нить; 2. Крюк; 3. Базальное тельце:

Химический состав жгутиков

Химический состав жгутиков однообразен. Они состоят из белка флагеллина (от латинского «flagellum» – жгутик) с молекулярной массой 25000–60000. В аминокислотном составе данного белка преобладают глутаминовая и аспарагиновая аминокислоты. Количество ароматических аминокислот в флагеллине незначительно. Триптофан, цистеин и цистин содержаться в следовых количествах или совсем отсутствуют [3] .

Движение бактерий при помощи жгутиков

Как указывалось ранее, жгутики являются органами движения бактерий. Характер движения определяется особенностью расположения жгутиков:

  • монотрихи – движутся по прямой линии;
  • перитрихи – беспорядочно и с кувырканием [3] .

Скорость движения бактерий при помощи жгутиков различна. Большинство подвижных форм бактерий за одну секунду проходят расстояние, близкое размерам их тел. Самой подвижной бактерией считается холерный вибрион. При длине тела в 2 мкм, он проходит за одну секунду до 30 мкм [3] .

Работа бактериального жгутика подобна работе корабельного винта. Если у клетки много жгутиков, то при передвижении они собираются в пучок, образующий своеобразный пропеллер. Пучок жгутиков быстро вращается против часовой стрелки, создавая силу, заставляющую бактерию двигаться почти прямолинейно. После того, как направление вращения жгутиков изменяется, пучок жгутиков расплетается, клетка останавливается и начинает хаотически вращаться и менять ориентацию. В момент, когда все жгутики снова начнут вращаться синхронно против часовой стрелки, образуя пропеллер, направление поступательного движения бактериальной клетки изменится [1] .

Поскольку у грамположительных бактерий отсутствует наружная пара колец, то считается, что для вращения жгутиков достаточно только внутренней пары колец (S и M). Данные кольца, соединенные с вращающимся стержнем, выступающим наружу, образуют своеобразный электромотор, обеспечивающий движение жгутика [1] .

В качестве источника энергии для вращения жгутиков используется протодвижущая сила, возникающая в цитоплазматической мембране. Происходит это следующим образом. На внешней стороне (периферии) кольца M расположены белки MotB. В участок цитоплазматической мембраны, примыкающей к краям колец M и S, встроены белки MotA [1] .

Вращающий момент возникает за счет взаимодействия субъединиц белка MotB с белковыми субъединицами MotA. В белковых субъединицах MotA имеются два протонных полуканала. Через них переносятся протоны из периплазматического пространства клеточной стенки в цитоплазму бактерий. В результате переноса протонов через белки MotА и MotВ происходит вращение кольца М. Один полный оборот данного кольца происходит при переносе через мембрану около 1000 протонов [1] .

Источник

Оцените статью
Разные способы