Способ передачи генетической информации бактерий

Вопрос 47. Способы передачи генетической информации

Быстрая реакция на изменения условий окружающей среды и приобретение необходимых генетических признаков (напр. изменение вирулентных свойств, устойчивость к АМП). Обмен генетической информацией (ОГИ)- механизм, обеспечивающий многообразие микробного мира.

ОГИ способствует быстрой адаптации бактерий.
ОГИ приводит к образованию рекомбинантной ДНК.
ОГИ служит важным фактором эволюции бактерий.

3 способа передачи генетической информации:

1. Конъюгация – внедрение ДНК из бактерии – донора в клетку реципиента
2. Трансформация – поглощение свободной ДНК из внешней среды
3. Трансдукция – распространение генов бактерий умеренными фагами

Конъюгация

Конъюгация – однонаправленный перенос генетического материала (хромосомной и плазмидной ДНК) от донора к реципиенту при непосредственном контакте клеток.
Донор – бактерия, содержащая конъюгативную плазмиду или конъюгативный транспозон, способная передавать ДНК реципиенту путем горизонтального переноса генов.
Реципиент – любая бактериальная клетка, способная принимать ДНК от бактерии-донора путем горизонтального переноса генов.

Механизм передачи конъюгативных плазмид между Гр- бактериями:
1. Образование межклеточного контакта — конъюгативных пилей
2. Сайт-специфическое разрезание одной цепочки ДНК
3. Сборка особой структуры — релаксосомы для переноса ДНК
4. Перемещение разделенных цепей ДНК в клетку реципиента
5. Синтез комплементарных цепей ДНК
6. Терминация переноса ДНК и разделение конъюгирующих клеток

Трансформация

Трансформация —поглощение бактерией ДНК из окружающей среды и включение в свой геном, при этом бактерия становится генетически трансформированной.
Впервые этот феномен описан у Streptococcus pneumoniae, когда непатогенные живые мутантные клетки стали патогенными для мышей при одновременной инъекции с убитыми нагреванием вирулентными клетками S.pneumoniae.
Изменение происходило в результате трансформирующего действия ДНК из убитых нагреванием вирулентных клеток S.pneumoniae.

Схема трансформации
1. Адсорбция ДНК на клетке (клеточной стенке)
2. Проникновение внутрь клетки
3. Рекомбинация с ДНК клеточной хромосомы

Трансдукция

Трансдукция — обмен генетическим материалом с участием бактериофагов.
Бактериофаги – вирусы бактерий — молекулярные паразиты, использующие для самовоспроизводства аппарат репликации ДНК и синтеза белка зараженных ими клеток.

Трансдукцию осуществляют бактериофаги, содержащие невирусную генетическую информацию. Подобно плазмидам, бактериофаги могут выступать в качестве векторов переноса ДНК от клеток-хозяев. Перенос фаговой информации может служить механизмом обмена генетическим материалом между бактериями. Бактериофаги E.coli

Виды трансдукции:
1. Специфическая трансдукция – перенос генов клетки-хозяина из строго определенных участков хромосомы бактериальной клетки. (Например, 5 из 11 фагов возбудителя дифтерии Corynebacterium diphtheriae – переносчики генов дифтерийного токсина).
2.Неспецифическая трансдукция (общая) — случайный перенос различных генов клетки-хозяина, расположенных в разных участках генома бактерии..Схема трансдукции

Вопрос 48. Размножение бактерий (клеточный цикл)

У всех живых организмов рост клеток – это увеличение массы и последующее деление с образованием двух идентичных клеток. Не являются исключением и бактерии.
У бактерий генетический материал — в ковалентно замкнутой кольцевой молекуле ДНК.
Молекула ДНК – хромосома. Хромосома расположена в нуклеоиде.

Деление клетки Neisseria gonorrhoeae

Период от деления до деления называется вегетативным клеточным циклом (ВКЦ), он включает несколько этапов:
Репликация ДНК – удвоение генетического материала
Расхождение двух наборов хромосом
Деление клетки

Особенности клеточного цикла прокариот: ВКЦ прокариот и эукариот во многом сходен. Однако есть отличие: Во время быстрого роста в одной бактериальной клетке может происходить 2 — 3 цикла репликации хромосом одновременно.

Читайте также:  Способы быстрой варки свеклы

Источник

Передача генетической информации у бактерий

Передача генетического материала от клетки-донора в клетку-реципиент путем непосредственною контакта клеток назы­вается конъюгацией.

Передача генетического материала от клет­ки-донора в клетку-реципиент впервые была обнаружена Дж. Ледербергом и Э. Тейтумом в 1946 г.

Необходимым условием для конъюгации является наличие в клетке-доноре транс­миссивной плазмиды.

Трансмиссивные плазмиды кодируют по­ловые пили, образующие конъюгационную трубочку между клеткой-донором и клеткой-реципиентом, по которому плазмидная ДНК передается в новую клетку. Механизм пере­дачи плазмидной ДНК из клетки в клетку заключается в том, что специальный белок, кодируемый tra-опероном, «узнает» опреде­ленную последовательность в ДНК плазмиды (называемую origin — начало, англ., перено-

са), вносит в эту последовательность однопе-почечный разрыв и ковалентно связывается с 5′-концом. Затем цепь ДНК, с которой связан белок, переносится в клетку-реципи­ент, а неразорванная комплементарная цепь остается в клетке-доноре. Клеточный аппарат синтеза ДНК достраивает одиночные цепи и в доноре и в реципиенте до двухцепочечной структуры. Белок связанный с 5′-концом пе­ренесенной цепи, способствует замыканию плазмиды в реципиентной клетке в кольцо. Этот процесс представлен на рис. 5.4, на примере переноса в реципиентную клетку плазмиды F — плодовитость, англ.). которая является как трансмиссивной, так и интегративной плазмидой. Клетки-доноры, обладающие F-фактором, обозначаются как F + -клетки, а клетки-реципиенты, не имею­щие F-фактора, обозначаются как F-клетки. Если F-фактор находится в клетке-доноре в автономном состоянии, то в результате скре­щивания: F + х F

клетка-реципиент приобре­тает донорские свойства (см. рис. 5.4, 1А).

Если F-фактор или другая трансмиссивная плазмида встраиваются в хромосому клетки-донора, то плазмида и хромосома начинают функционировать в виде единого трансмис­сивного репликона, что делает возможным пе­ренос бактериальных генов в бесплазмидную клетку-реципиент, т. е. процесс конъюгации. Штаммы, в которых плазмида находится в интегрированном состоянии, переносят свои хромосомные гены бесплазмидным клеткам с высокой частотой и поэтому называются Hfr (от англ. high frequency of recombination — высо­кая частота рекомбинации)

Процесс переноса хромосомных генов в слу­чае скрещивания: Hfr xF

всегда начинается с расщепления ДНК в одной и той же точке, месте интеграции F-фактора или другой транс­миссивной плазмиды. Одна нить донорской ДНК передается через конъюгационный мос­тик в реципиентную клетку. Процесс сопро­вождается достраиванием комплементарной нити до образования двунитчатой структуры. Перенос хромосомных генов при конъюга­ции всегда имеет одинаковую направленность, противоположную встроенной плазмиде. Сама трансмиссивная плазмида передается послед­ней. Переданная в реципиентную клетку и до-

строенная до двунитчатой структуры нить ДНК донора рекомбинирует с гомологичным участ­ком реципиентной ДНК с образованием ста­бильной генетической структуры. Вследствие хрупкости конъюгационного мостика половой фактор редко передается в клетку-реципиент, поэтому образовавшиеся рекомбинант донор­скими функциями как правило не обладает.

Вследствие направленности передачи генов ко­нъюгация используется для картирования генома бактерий и построения генетической карты.

Трансдукцией называют передачу бактери-альной ДНК посредством бактериофага.

Этот процесс был открыт в 1951 г. Н. Циндером и Дж. Ледербергом. В процессе репликации фага внутри бактерий (см. разд. 3.5) фрагмент бактериальной ДНК проникает в фаговую частицу и переносится в реципиен-тную бактерию во время фаговой инфекции. Существует два типа трансдукции:

общая трансдукция — перенос бактериофа­гом фрагмента любой части бактериальной хромосомы — происходит вследствие того, что бактериальная ДНК фрагментируется после фаговой инфекции и кусочек бактериальной ДНК того же размера, что и фаговая ДНК, проникает в вирусную, формируя дефектную фаговую частицу с частотой приблизительно 1 на 1000 фаговых частиц (рис. 5.4, 2А). При инфицировании клетки-реципиента дефек­тной фаговой частицей ДНК клетки-донора «впрыскивается» в нее и рекомбинирует го­мологичной рекомбинацией с гомологичным участком хромосомы-реципиента с образова­нием стабильного рекомбинанта. Этим типом трансдукции обладают Р-фаги;

Читайте также:  Способ представления непрерывности цветовых переходов это

специфическая трансдукция — наблюдается в том случае, когда фаговая ДНК интегрирует в бактериальную хромосому с образованием профага. В процессе исключения ДНК-фага из бактериальной хромосомы в результате случайного процесса захватывается приле­гающий к месту включения фаговой ДНК фрагмент бактериальной хромосомы, стано­вясь дефектным фагом (рис. 5.4, 2Б). Так как большинство умеренных бактериофагов

интегрирует в бактериальную хромосому в специфических участках, для таких бакте­риофагов характерен перенос в клетку-ре­ципиент определенного участка бактериаль­ной ДНК клетки-донора. ДНК дефектного фага рекомбинирует с ДНК клетки-реципи­ента сайт-специфической рекомбинацией. Рекомбинант становится меродиплоидом по привнесенному гену. В частности, бактери-офагпередает специфической трансдукцией gal-ген у Е. coli.

Феномен трансформации впервые был опи­сан в 1928 г. Ф. Гриффитсом, обнаружившим превращение бескапсульного R-штамма пнев­мококков (Streptococcus pneumoniae) в штамм, образующий капсулу S-формы. Гриффите ввел мышам одновременно небольшое количество авирулентных R-клеток и убитых нагреванием S-клеток. R-клетки были получены от штамма, капсульное вещество которого принадлежало к типу S II, а убитые нагреванием S-штаммы принадлежали к типу SIII. Из крови погибших мышей были выделены вирулентные пневмо­кокки с капсулой S III.

Природу трансформирующего фактора в 1944 г. установили О. Эвери, К. Мак-Леод, М. Мак-Карти, которые показали, что ДНК, экстрагированная из инкапсулированных пневмококков, может трансформировать не-капсулированные пневмококки в инкапсу­лированную форму. Таким образом, было до­казано, что именно ДНК является носителем генетической информации.

Процесс трансформации может самопро­извольно происходить в природе у некоторых видов бактерий, чаще у грамположительных, когда ДНК, выделенная из погибших клеток, захватывается реципиентными клетками.

Процесс трансформации зависит от ком­петентности клетки-реципиента и состо­яния донорской трансформирующей ДНК. Компетентность — это способность бактери­альной клетки поглощать ДНК. Она зависит от присутствия особых белков в клеточной мембране, обладающих специфическим аф­финитетом к ДНК. Состояние компетентнос­ти у грамположительных бактерий связано с определенными фазами кривой роста.

Трансформирующей активностью обла­дает только двунитчатая высокоспирализо-ванная молекула ДНК.

Это связано с тем, что в клетку-реципиент проникает только одна нить ДНК, тогда как другая — на клеточной мембране — подвер­гается деградации с освобождением энергии, которая необходима для проникновения в клетку сохранившейся нити. Высокий моле­кулярный вес трансформирующей ДНК уве­личивает шанс рекомбинации, так как внутри клетки трансформирующая нить ДНК подвер­гается воздействию эндонуклеаз. Интеграция с хромосомой требует наличия гомологичных с ней участков у трансформирующей ДНК. Рекомбинация происходит на одной нити, в результате чего образуется гетеродуплексная молекула, одна нить которой имеет гено­тип реципиента, а другая — рекомбинантный генотип. Рекомбинантные трансформанты формируются только после цикла реплика­ции (рис. 5.4, 3).

В настоящее время этот метод является ос­новным методом генной инженерии, исполь­зуемым при конструировании рекомбинант-ных штаммов с заданным геномом.

Дата добавления: 2016-02-04 ; просмотров: 2520 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Общая характеристика способов обмена генетической информацией у бактерий

У бактерий, как и у высших организмов, существуют механизмы, которые обеспечивают перекомбинацию генетического материала между родственными, но генетически неидентичными клетками. В результате такого обмена возникает потомство с новой комбинацией наследственных признаков – рекомбинанты. Однако способы обмена генетической информацией и процессы формирования рекомбинантов у бактерий отличаются от существующих у эукариот, что вносит своеобразие в рекомбинационный анализ генетической организации бактериальной хромосомы.

Читайте также:  Вяжем спицами пинетки простым способом

Известны три механизма передачи генетического материала у бактерий: конъюгация, трансформация и трансдукция.

Конъюгация – это направленный перенос генетического материала из клетки-донора в клетку-реципиент при непосредственном физическом контакте между ними.

Трансформация – способ передачи генетической информации от клеток-доноров к клеткам-реципиентам с помощью химически чистой ДНК.

Трансдукция – это перенос генетического материала из клеток-доноров в клетки-реципиенты с помощью бактериофагов.

Основная отличительная черта всех трех механизмов – это однонаправленный перенос от одной клетки (донора) к другой (реципиенту) части генетического материала (рис.5). Вследствие такого обмена возникает не полноценная диплоидная зигота, а частично диплоидная (меродиплоидная) зигота, или, так называемая, мерозигота. В мерозиготе генетический материал реципиентной клетки представлен целой хромосомой, а материал донорной клетки только фрагментом хромосомы или частью генома.

Рис. 5. Механизмы передачи генетического материала у бактерий и судьба перенесенного фрагмента

Судьба перенесенного фрагмента донорной ДНК в мерозиготе неоднозначна и зависит от многих факторов. Обычно он не способен к самостоятельной редупликации в клетке реципиента, так как не является репликоном, но некоторое время может в ней сохраняться и даже функционировать (транскрибироваться). В этом случае фрагмент ДНК донора при каждом делении мерозиготы будет передаваться лишь одной из дочерних клеток (однолинейная передача). Однако такое состояние не стабильно и может привести либо к утере фрагмента, либо к включению его в хромосому реципиентной клетки за счет рекомбинации (кроссинговера или конверсии) с ее гомологичной последовательностью.

Важно отметить ту особенность рекомбинации у бактерий, что только четное число обменов между хромосомой реципиента и переданным фрагментом донора дает полноценную хромосому. Единичный или нечетный кроссинговер приводит к размыканию хромосомы и дупликации концевых фрагментов (рис.5). Следовательно, элементарным регистрируемым актом рекомбинации в мерозиготе является двойной кроссинговер. Результатом двойного (или четного) обмена является реципрокная интеграция донорного фрагмента в реципиентную хромосому и участка реципиентной хромосомы в донорный фрагмент. Так как донорный фрагмент обычно не реплицируется и в дальнейшем теряется, регистрируется только интеграция в хромосому. Включенный фрагмент (или его участок) будет реплицироваться совместно с хромосомой реципиента и передаваться потомству. В результате в популяции реципиентных клеток появятся стабильные рекомбинанты, получившие некоторые признаки донора. Отмеченная особенность рекомбинации приводит к нереципрокности и уменьшенному вдвое выходу рекомбинантов.

Следует также напомнить, что бактериальные клетки в различных условиях могут содержать несколько копий геномных молекул ДНК. Поэтому рекомбинанты появляются не сразу, а после 3-4 последовательных делений, когда клетки становятся гаплоидными (несут одинаковые копии).

Размер перенесенного фрагмента хромосомы донора зависит от способа передачи генетического материала. Например, при трансдукции он ограничен объемом головки бактериофага, в которую может быть ошибочно упакована ДНК клетки-хозяина. При трансформации длина переносимой молекулы очень мала и зависит от способа приготовления препарата ДНК и специфики конкретной системы. Только при конъюгации размер переносимого генетического материала может значительно колебаться и в редких случаях достигать размера полного генома.

Дата добавления: 2015-02-07 ; просмотров: 2402 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Оцените статью
Разные способы