Способ пассивного определения координат источников гидроакустического излучения
Владельцы патента RU 2680860:
Изобретение относится к области гидроакустики и может быть использовано в пассивной гидролокации, а также в атмосферной акустике и пассивной радиолокации. Предложен способ пассивного определения координат источников гидроакустического излучения, содержащий прием сигналов М≥3 антеннами, предварительную обработку принятых сигналов, включающую синхронную дискретизацию, цифровое преобразование и преобразование Фурье (ПФ), индикацию в координатной сетке (КС) «направление-дальность», вычисление для каждой pq-й ячейки КС попарных разностей времен распространения сигнала. В соответствии с предложенным способом на каждой из М антенн формируют вееры направленных каналов (НК) и для каждого направления αнкi на каждой частоте ƒk массивов ПФ определяют треугольную таблицу из (М 2 -М)/2 значений оценки попарных ВСПМ выходных сигналов Xmik=[xmik] каждой m-й антенны с выходными сигналами каждой n-й антенны с временным накоплением оценок ВСПМ. Полученную треугольную таблицу преобразуют в матрицу Gi(ƒk)=[gmni(ƒk)] размерности М×М и применяют преобразование обращения. После чего суммируют по m, n в [р, q]-х узлах КС элементы обращенной матрицы [bmni(ƒk)] с умножением на коэффициент компенсации временных задержек ехр(-jƒkτmni(αр, Dq)), суммируют по частоте ƒk в пределах частотного диапазона приема ƒkн, ƒkв с заданной частотной характеристикой h(ƒk) и индицируют в координатной сетке «направление-дальность» (αр/Dq), а координаты источников излучения определяют по положению максимумов индикаторных значений на координатных шкалах КС. Предлагаемый способ позволяет уменьшить искажение и увеличить точность определения координат и разрешения по направлению и дальности нескольких источников излучения в заданном секторе наблюдения (αmin, αmax) на экране индикатора, а также уменьшить искажение их сигнальных отметок на индикаторе. 8 ил.
Предлагаемое изобретение относится к области гидроакустики и может быть использовано в пассивной гидролокации, а также в атмосферной акустике и пассивной радиолокации.
Методы определения координат источника гидроакустического излучения по кривизне волнового фронта поля с использованием разнесенных в пространстве приемников основаны на оценке разности времен прихода сигнала со сферическим или цилиндрическим волновым фронтом от источника излучения к нескольким М приемникам или направленным антеннам с известным расположением их в пространстве. При наличии в секторе наблюдения других источников излучения имеет место взаимное искажение их поля, которое приводит к искажению откликов приемной системы, снижению индикаторного отношения сигнал/помеха и смещению оценок координат и дальности действия устройства обзора и определения координат. Известны адаптивные способы уменьшения взаимного влияния полей источников при обнаружении и определении направлений на них в случае, когда фрагмент поверхности поля в пределах апертуры приемной антенны можно считать плоским.
Известен способ определения направления α на объект [1, с. 255] с использованием антенной решетки из М приемных элементов в плосковолновой зоне поля источника, на выходах которых имеет место смесь полезного сигнала и некоррелированной с ним помехи C1=Cm+Пmj, в том числе J локальных помех. Метод приема основан на формировании веера характеристик направленности (ФХН) в окрестностях направлении приема («очищаемого» направления) и в направлении на мешающий источник, оценке суммарного помехового сигнала в очищаемом направлении от локальных помех с других направлений αj и вычитании его из процесса на выходе обычного устройства ФХН.
Преимуществом этого способа является повышение отношения сигнал/помеха слабого источника на выходе ФХН и точности определения направления на него на фоне распределенной помехи и мешающих локальных источников. Недостатком этого способа является то, что он предназначен для определения только направления, при плосковолновом фронте сигналов. Способ не предусматривает функцию обзора в секторе направлений и интервале дистанций. Определение этим способом всех координат, в том числе дальности до источника в пределах зоны Френеля его поля, невозможно.
Известен способ [2, с. 85] оптимального обнаружения плосковолновых сигналов с антенной решеткой (АР) из М элементов, основанный на объединении приемных элементов АР в группы (подрешетки), обработки вектора измерений X в частотной области с выходов устройств формирования характеристик направленности (ФХН) таких групп многомерным фильтром пространственно-временного спектра помехи (ПВФ), квадрировании и интегрировании. Модификацией этого способа является обработка информации с выходов сформированных пространственных каналов АР — выходов устройств ФХН. Метод оптимальной обработки по этому способу заключается в следующем [2, с. 85]: предполагают, что матрица ВСПМ N0ƒ распределенной (фоновой) помехи на выходах приемной системы (ПС) известна или оценивается каким-либо образом в процессе приема и тогда на каждой частоте преобразования Фурье (ПФ) выходных сигналов элементов ПС (или ФХН антенн ПС) определяют произведение вектора измерений на матрицу, обратную матрице ВСПМ
и на вектор Lsƒ компенсации времен прихода сигнала к элементам, или ФХН антенн ПС с направления искомого сигнала αs. Параллельно оценивают произведение вектора измерений
на вектор компенсации Lpƒ с направления локальной помехи αр и вычитают из предыдущего произведения. Результат этой разности возводят в квадрат и суммируют по частоте с умножением на hsƒ — оптимальную характеристику частотного фильтра для искомого сигнала.
Недостатки этого способа: способ сформулирован для определения оптимального отклика одного («полезного») плосковолнового сигнала в направлении его прихода, не предусматривает обзора в поле наблюдения с определением координат видимых источников излучения, требует предварительного определения уровней и направлений на мешающие источники помех. Другие недостатки те же, что в предыдущем аналоге.
По количеству общих признаков наиболее близким к предполагаемому изобретению является способ пассивного определения координат источников излучения по патенту [3], содержащий прием сигналов широкоапертурной приемной системой (ПС) из М≥3 антенн, расположенных в пространстве известным образом, в зоне Френеля источников. Этот способ обеспечивает визуальное отображение откликов ПС на поле источников излучения на экране индикатора с координатной сеткой «направление/дальность» размером P×Q узлов в виде сигнальных отметок (СО), путем определения (М 2 -М)/2 попарных взаимно — корреляционных функций (ПВКФ) Cmn(τ) сигналов каждой m-й антенны с сигналом каждой другой n-й антенны и суммирования значений Cmn(τ), считанных в точках τ=τmn(p,q) в каждом (αp/Dq)-ом узле координатной сетки. По помехоустойчивости этот способ обработки эквивалентен оптимальному методу при изотропной помехе с квадрированием и интегрированием. Значения компенсационных задержек τmn(p,q) в pq-x узлах координатной сетки (КС) рассчитываются заранее по формулам тригонометрии при задании оператором границ сектора обзора и параметров КС индикатора (αmin≤αр≤αmax, δα, Dmin≤Dq≤Dmax, δD) при известных координатах центров антенн ПС .
Преимущество этого способа в том, что он использует обработку М-канальной широкоапертурной ПС в ближней зоне поля излучения источников (в зоне Френеля), обеспечивая визуальное наблюдение источников излучения в виде их СО на двухкоординатном поле индикатора «направление/дальность», с прямым определением их координат по положению максимума СО на его шкалах. Недостатком этого способа является взаимные искажения СО источников излучения, приводящее к смещению оценок координат и уменьшению индикаторного отношения сигнал/помеха при наличии других источников в секторе обзора и даже за его пределами.
Задачей изобретения является повышение надежности обнаружения СО слабого источника на фоне мешающих локальных источников и точности их расположения в поле наблюдения непосредственно в координатах «направление-дальность» (α, D) в заданном секторе направлений и интервале дальностей с высокой разрешающей способностью.
Техническим результатом предполагаемого изобретения является обеспечение визуального наблюдения и определения координат нескольких источников излучения в заданном секторе наблюдения (αmin, αmax) на экране индикатора, уменьшение искажений их СО и увеличение точности определения координат и разрешения по направлению и дальности путем увеличения остроты главных максимумов СО.
Для обеспечения указанного технического результата в «способ пассивного определения координат источников излучения», содержащий прием сигналов М≥3 антеннами, расположенными в пространстве известным образом, предварительную обработку принятых сигналов, включающую синхронную дискретизацию, цифровое преобразование и циклическое преобразование Фурье (ПФ), индикацию в координатной сетке (КС) «направление-дальность» (αp/Dq), содержащей P×Q ячеек суммирования и частотного и временного накопления индикаторной таблицы на заданном временном интервале Тн, вычисление для каждой pq-ой ячейки КС попарных разностей времен распространения сигнала τmn(pq) к каждой m-й антенне и каждой другой n-й антенне из pq-ой точки поля наблюдения с координатами pq-ой ячейки КС (как если бы источник находился в этой точке) введены новые признаки, а именно:
на каждой из М антенн идентично формируют вееры направленных каналов (НК), оси характеристик направленности (ХН) которых ориентированы в направлениях αнкi в заданном секторе наблюдения αmin≤αнкi≤αmax, с заданным интервалом Δα. Для каждого направления αHКi на каждой частоте ƒk массивов ПФ определяют треугольную (для сокращения вычислительных затрат) таблицу оценок попарных ВСПМ из (М 2 -М)/2 значений выходных сигналов однонаправленных НКi каждой m-ой антенны с выходными сигналами НКi каждой n-й антенны, при m, n=1…М, но m -1 =[bmni(ƒk)]=Bmni(ƒk). Далее организуют индикаторную таблицу Z(α, D)=[z(αp, Dq)]=[zpq] размерности P×Q, выводимую на экран индикатора. Для этого в [р, q]-x узлах КС суммируют элементы [bmni(ƒk)] по m, n с умножением на коэффициент компенсации попарных взаимных временных задержек τmn(pq):
(вычисленных ранее при назначении параметров КС), и результаты этого суммирования суммируют по частоте ƒk в пределах частотного диапазона приема ƒkн, ƒkв с заданной частотной характеристикой h(ƒk) (например, эккартовской [2, с. 76-79]):
и дополнительно накапливают во времени Тн2, после чего индицируют весь массив Z в координатной сетке «направление-дальность» (αp/Dq), а координаты источников излучения определяют по положению максимумов индикаторных значений Zpq на координатных шкалах КС.
Новизна предлагаемого решения заключается в том, что на каждой из М антенн широкоапертурной ПС формируют вееры направленных каналов в заданном секторе обзора, в обработку выходных сигналов которых введены операции приближенной пространственно-временной фильтрации (ПВФ) следующим образом. Известный из плосковолновой акустики оптимальный метод обработки при определении одной координаты — направлениея α можно представить как [2, с. 47]:
где первый сумматор представляет накопление по времени на интервале Т, включающем заданное число циклов ПФ, а второй сумматор интегрирует результаты обработки на частотах ƒkн÷ƒkв на t-том цикле ПФ, Х1 ƒk — ƒk-й вектор измерений с выходов сумматоров М антенн ПС, Gƒk — матрица (в общем случае неизвестная) размерности М×М взаимных спектральных плотностей мощности (ВСПМ) суммарной составляющей шума и локальных помех на выходах элементов ПС, без сигнала искомого источника, для чего на практике применяют приближенные методы измерения Gƒk, Lƒk — вектор коэффициентов, компенсирующих в частотной области времена прихода сигнала к центрам антенн ПС, т.е. формирующих ХН для заданного направления αs — как в аналоге [2], или фокусирующих в точку αp, Dq, — как в аналоге-прототипе [3]. Выражение (1) можно представить эквивалентным образом как:
где Ctƒk — оценка ВСПМ текущего векторного суммарного процесса с выходов элементов АР на частоте ƒk с осреднением этой оценки на интервале Т. Если уровень полезного (искомого) сигнала мал, а уровни когерентных составляющих локальных помех больше фонового шума, что для практики является наиболее актуальной ситуацией, и время накопления Т достаточно велико, то оценку матрицы ВСПМ выходного векторного процесса Ctƒk можно приближенно считать равной матрице составляющей шума и локальных помех, т.е. Ctƒk≈Ctƒk (сравните: [2, с. 171]) и тогда способ обработки информации с учетом (2) при осреднении за время Г и на интервале частот (ƒkн÷ƒkв) примет простой вид:
где Вƒk — матрица М×М, обратная оценке ВСПМ суммарного процесса с выходов элементов АР Сƒk: , m,n=1,…, М, — номера элементов ПС. В выражении (3) приближенно, но компактно объединяются процедуры оптимальной обработки выражения (1):
— ПВФ, использованием (),
— квадрирования, — (|*| 2 ) и
— временного и частотного интегрирования .
Выражение в круглых скобках в (3) соответствует суммированию по m и по n (m,n=1,…, М) элементов Bƒk=[bmnk] с умножением на коэффициент компенсации разности времен прихода сигнала к центрам m-ой и n-ой антенн ПС (фокусировки): ехр(-j2πƒτmn(α, D, rm, rn)).
С точки зрения физики ПВФ принятого векторного процесса Xtƒk в виде Bƒk==[bmnk] с одной стороны обеспечивает подавление всех источников излучения (в том числе и «полезного» сигнала, ожидаемого в точке, соответствующей узлу КС (αp, Dq), с другой стороны, благодаря фокусировке Lƒk (αр, Dq) сигнал источника, если он находится в этой точке, становится видимым, а его максимум СО, благодаря ПВФ соседних направлений, существенно обостряется по сравнению с традиционной обработкой, тем самым обеспечивая повышение точности определения координат и разрешающей способности как по направлению, так и по дальности.
Таким образом, предлагаемый метод включает следующие действия: ФХН антенн или других элементов ПС, оценку таблицы ВСПМ текущего векторного суммарного процесса Xtƒk с выходов однонаправленных элементов ПС на частотах ƒk ПФ, осреднение этой таблицы на интервале Тн1, преобразование вида «обращение матрицы» и суммирование в узлах КС элементов обращенной таблицы по m и n с умножением на коэффициенты компенсации разности времен прихода полезного сигнала с направления α на его источник к m,n-ыи элементам ПС с координатами
,
. Затем производят суммирование по частоте ƒk. После чего индицируют весь массив Zpq в координатной сетке «направление-дальность» (αp/Dq), а координаты источников излучения определяют по положению максимумов индикаторных значений Zpq на координатных шкалах КС. Примечание: выбор НКi при суммировании в ячейках массива Zpq предполагает условие: αр≈αi, в пределах ширины ХН НКi, например, на уровне 0.7, 0.8, …, по заданию разработчика.
Введение новых признаков обеспечивает визуальное наблюдение СО источников излучения в поле наблюдения на экране индикатора «направление/дальность» с минимальными искажениями и потерями помехоустойчивости, повышение точности определения координат и разрешения по направлению и дальности всех наблюдаемых источников благодаря двум факторам адаптивного воздействия на форму СО каждого источника излучения в поле индикаторного наблюдения, а именно: обострение главного максимума СО, повышающего отношение индикаторного отношения сигнал/помеха по обоим координатам, точность и разрешающую способность и уменьшение боковых лепестков СО, интерференция которых приводит к взаимному непредсказуемому смещению оценок координат обеих (или большего количества) источников в поле наблюдения. Повышение помехоустойчивости до оптимальной здесь обеспечивается суммированием в каждой pq-й точке координатной сетки значений всех ВСПМ элементов приемной системы.
Сущность изобретения поясняется фиг. 1-8, где фиг. 1 — Схема устройства пассивного определения координат источников гидроакустического излучения, фиг. 2 — Фрагмент схемы фиг. 1 с блоками 1-3, фиг. 3 — Фрагмент схемы фиг. 1 с блоками 4-7, фиг. 4, 5 — Рельеф индикаторной таблицы в аксонометрии в секторе [-3°÷1.5°; 1÷10 км] при наблюдении двух источников с координатами: [-2°, 6 км] и [0°, 2.5 км] при использовании способа — прототипа (фиг. 4) и предлагаемого способа (фиг. 5), фиг. 6, 7 — индикаторные картины и сечения СО по α и по D, проходящие через максимумы СО, при обработке по способу — прототипу (фиг. 6) и предлагаемому способу (фиг. 7), на фиг. 8, для численного сравнения, показаны сечения СО по D прототипа и предлагаемого способа при α=αmax, т.е через направления максимумов СО соответствующих источников.
На фиг. 1÷3 показаны: 1 — блок ПС, приемная система из М антенн, по Nn приемников каждая, 2 — блок предварительной обработки БПО из М модулей ПО 2.1 — 2.М, 3 — блок формирования вееров ХН из М модулей ФХН 3.1 — 3.М, 4 — блок измерения попарных ВСПМ однонаправленных каналов антенн из (М2-М)/2 модулей Cmni(ƒk), m,n=1, …, М при m 2 -M)/2-мерная таблица значений оценки попарных ВСПМ выходных сигналов однонаправленных НКi каждой m-ой антенны с выходными сигналами НК, каждой n-й антенны. В блоке 5 значения оценки попарных ВСПМ во всех таблицах осредняют по циклам ПФ в пределах заданного времени накопления Тн1, задаваемого из ПУ блока 11. Треугольные таблицы, полученные в блоке 5 преобразуют в блоке 6 в М×М-мерные таблицы ВСПМ, после чего к этим таблицам применяют преобразование обращения в блоке 7, содержащем известные программируемые процессоры (модули 7.1 — 7.I). В блоке 8 формируют элементы индикаторной картины. Для этого в ее ячейках ([р, q]-x узлах КС) суммируют по m, n элементы с умножением на коэффициент компенсации попарных взаимных временных задержек τmn(pq), вычисленных в блоке 9: exp(-jƒkτmni(αp, Dq)), затем суммируют по частоте ƒk в пределах заданного частотного диапазона приема ƒkн, ƒkв с заданной частотной характеристикой h(ƒk) и в блоке 10 накапливают во времени на заданном из блока 11 интервале Тн2. Результаты суммирования 8 и накопления 10 поступают на индикатор — в блок 12, визуально представляющий изображение поля наблюдения в заданном секторе направлений и интервале дальностей координатной КС индикатора (αmin≤αр≤αmax, δα, Dmin≤Dq≤Dmax, δD) со всеми наблюдаемыми источниками излучения с высокой разрешающей способностью и точностью определения координат.
Работоспособность предлагаемого способа пассивного определения координат подтверждена моделированием и натурной проверкой на записях сигналов, полученных при испытаниях макетов различных ПС в реальных условиях. Количественные результаты моделирования, описанного выше и отраженные в фиг. 4-8 следующие:
— увеличение индикаторного отношения [сигнал]/[среднее значение помехи] в 2.7 раза, что показывает контраст СО на фоне помехи, как это видно из сравнения фиг. 4 и фиг. 5 и соответственно индикаторных картин и сечений СО 16, 17 и 20, 21 соответственно на фиг. 6 и фиг. 7. На фиг. 8 это отношения максимальных уровней графиков СО 16 и 20 к средним уровням помехи 24 и 25 соответственно,
— увеличение индикаторного отношения [приращение сигнала]/[стандартное отклонение помехи] в 3.03 раза (традиционный критерий помехоустойчивости), что видно из сравнения размаха отклонения помехи от ее среднего значения на графиках 18, 19 на фиг. 6 и графиках 22, 23 на фиг. 7.
— обострение главного максимума сечения СО по дальности 20 по сравнению с сечением 16 на фиг. 8 в 12.2 раза, оценивая его количественно по величине производной ∂Z (D, αmax)/∂D в точке максимума CO. Это обострение пропорционально повышению точности оценки D, т.е уменьшению ее флуктуационной погрешности.
Аналогичные результаты по определению направления в данной модели имеют тот же характер, что можно видеть из сравнения графиков 18, 19 на фиг. 6 с графиками 22, 23 на фиг. 7, но подробнее здесь не приводятся, чтобы не перегружать материал, имея в виду также то, что благодаря большому волновому размеру ПС, точность пеленгования в пассивной гидролокации количественно очень высока (сотые и тысячные доли градуса), настолько, что в большинстве обычных для практики применений не актуальна.
1. Г.С. Малышкин. Оптимальные и адаптивные методы обработки гидроакустических сигналов. Том 1. СПб, ОАО «Концерн «Электроприбор». 2011.
2. В.Г. Гусев. Системы пространственно-временной обработки гидроакустической информации. Ленинград, «Судостроение». 1988.
3. Способ пассивного определения координат источников излучения. Патент №2507531. Россия. ОАО «Концерн «Океанприбор». МПК J01S 3/80. Приоритет 08.11.2012, зарегистрирован 20.02.14 г.
4. Г. Корн и Т. Корн. Справочник по математике.: М. «Наука». 1974 г.
Способ пассивного определения координат источников гидроакустического излучения, содержащий прием сигналов М≥3 антеннами, расположенными в пространстве известным образом, предварительную обработку принятых сигналов, включающую синхронную дискретизацию, цифровое преобразование и преобразование Фурье (ПФ), индикацию в координатной сетке (КС) «направление-дальность» (αp/Dq), содержащей P×Q ячеек суммирования и частотного и временного накопления индикаторной таблицы на заданном интервале Тн, вычисление для каждой pq-й ячейки КС попарных разностей времен распространения сигнала к каждой m-й антенне и каждой другой n-й антенне из точки поля наблюдения с координатами pq-й ячейки КС τmn(pq), как если бы источник находился в этой точке, отличающийся тем, что на каждой из М антенн идентично формируют вееры направленных каналов (НК), оси характеристик направленности (ХН) которых ориентированы в направлениях αнкi, в заданном секторе наблюдения αmin≤αнкi≤αmax, с заданным интервалом Δα, для каждого направления αнкi на каждой частоте ƒk массивов ПФ определяют таблицу оценок попарных ВСПМ из (М 2 -М)/2 значений выходных сигналов однонаправленных НКi каждой m-й антенны с выходными сигналами НКi каждой n-й антенны, при m, n=1…М, но m Изобретение относится к акустике, в частности, к способам определения прямоугольных координат источника звука. Способ определения координат стреляющих артиллерийских систем и разрывов снарядов звукометрическим комплексом, основанный на установке звукоприемников в точках с подготовленными координатами.
Источник