Способ определения удельной поверхности

Определение удельной поверхности руд, продуктов обогащения и минералов

Удельная поверхность минерального сырья — суммарная площадь поверхности частиц, отнесенная к единице объема или массы всего дисперсного твердого материала.

Удельная поверхность минералов изменяется в широких пределах и используется в качестве важнейшего показателя при оценке степени измельчения сырья, правильности формы частиц, шероховатости их поверхности, наличия пор, для расчета плотности сорбционного слоя флотационных реагентов и эффективности сепарации различными методами.

В практике исследования гранулометрического состава мелкодисперсного минерального сырья различают полную и внешнюю удельную поверхность. Внешняя удельная поверхность — суммарная поверхность, образованная ровными участками, выступами, извилинами и трещинами, глубина которых меньше их ширины. Полная удельная поверхность — суммарная поверхность, образованная внешней и внутренней, включающей глубокие трещины, сквозные и тупиковые поры, другие дефекты кристаллических структур и т.д.

Удельную поверхность определяют на сухом материале. Методом квадратования или квартования объединенной пробы подготавливают навески массой не менее 10 и 100 г для определения соответственно полной и внешней удельной поверхности.

Для определения удельной поверхности измельченных продуктов применяют в основном два метода: расчетно-графический (электронно-микроскопический, автоматический с применением телевизионной техники, по данным гранулометрического состава) и экспериментальный (по скорости фильтрации жидкости или воздуха через слой порошка, адсорбции газов или другим параметрам, зависящим от удельной поверхности материала, например, кондуктометрический, ртутной порометрии, рассеяния рентгеновских лучей, кинематический и другие).

Наиболее распространены методы, основанные на измерении гидравлического сопротивления, оказываемого слоем измельченного материала фильтрации жидкости или газа.

Д. Арси, изучая фильтрацию воды через песчаные грунты, установил, что расход воды, фильтрующейся через слой фунта, пропорционален полному сечению фильтра и гидравлическому градиенту

где Q — расход жидкости, то есть объем протекающей через фильтр в единицу времени жидкости; F— полное сечение жидкости; I — гидравлический градиент; k — коэффициент пропорциональности, зависящий от свойств грунта и называемый коэффициентом фильтрации.

Скорость фильтрации (то есть расход, приходящийся на единицу площади фильтра):

то есть коэффициент фильтрации имеет размерность скорости и представляет скорость фильтрации на единицу гидравлического градиента. Экспериментальные и теоретические исследования показали, что величина коэффициента фильтрации зависит от размеров частиц грунта, его пористости, вязкости фильтрующейся жидкости.

Концени, основываясь на законе Пуазейля о протекании жидкостей через капиллярные трубки и рассматривая песок как совокупность капилляров, вывел формулу:

где d — эффективный диаметр частиц; m — пористость; n — вязкость жидкости.

Кроме того, Концени вывел теоретически зависимость скорости фильтрации от величины поверхности частиц материала, содержащихся в единице объема фильтра:

где q — скорость фильтрации; AP — разность давлений по сторонам фильтра; L — толщина фильтра; g — ускорение; m — коэффициент пористости; n — вязкость жидкости; sоб — поверхность частиц, содержащихся в единице объема фильтра; k — константа Концени, величина которой равна 5.

Принимая во внимание, что между величиной поверхности частиц, содержащихся в единице объема фильтра, величиной удельной поверхности частиц, относящейся к единице истинного объема частиц, и коэффициентом пористости существует соотношение:

где р — плотность материала.

Однако определение удельной поверхности тонкоизмельченных материалов при помощи фильтрации жидкостей имело ряд недостатков, а именно: а) возможность коагуляции вещества жидкостью; б) необходимость введения поправки на уменьшение диаметра пор вследствие наличия адсорбированного слоя жидкости на поверхности частиц; в) относительно большая продолжительность опыта. Указанные недостатки исключаются при замене жидкости газами (воздухом).

Читайте также:  Виды налогов способу изъятия

Для определения удельной поверхности разработано много приборов. Следует выделить приборы, в основу принципа работы которых положен метод фильтрации воздуха при постоянном потоке (приборы Товарова, Фишера и др.), при изменяющемся потоке (приборы ПСХ-4, АДП-1, Блейна и др.), при молекулярном или кнудсеновском потоке (приборы Дерягина, УГП), адсорбции газов (объемные, динамические, хроматографические установки, «Акусорб 2100», «Дижисорб 2600» и др.).

Прибор Товарова (рис. 3.47) применяется для определения удельной поверхности грубодисперсных систем. Он состоит из гильзы 1, плунжера 2, аспиратора 12 и водяного манометра 14. Гильза представляет собой установленную на подставке трубку с внутренним диаметром 25,2+0,1 мм. Между подставкой и гильзой зажимается металлический диск 8 с отверстиями и кольцевая резиновая прокладка 9 (шириной 3 мм, толщиной 2 мм и диаметром 43 мм). При закреплении гильзы на подставке болтами необходимо следить, чтобы резиновая прокладка не попала между гильзой и диском 8. На последний кладется кружок фильтровальной бумаги. Затем в гильзу насыпается навеска анализируемого материала, предварительно подсушенного, охлажденного на воздухе и взвешенного с точностью до 0,1 г. Легкими ударами подставки о стол поверхность навески в гильзе выравнивают. Затем на нее кладут лист фильтровальной бумаги, диаметр которого должен быть точно равен внутреннему диаметру гильзы, после чего навеска прессуется плунжером 2 до соприкосновения упорного кольца плунжера с гильзой. Если упорное кольцо не доходит до гильзы, то массу навески следует уменьшить. Необходимая масса навески m2 определяется по формуле:

где m1 — предварительно взятая масса навески, г; L1 — высота слоя навески, соответствующая массе навески m1, мм.

Значение L1 определяется с помощью миллиметровой шкалы 4, нанесенной на гильзе, и шкалы нониуса 5, закрепленной на плунжере. Устанавливают нониус перемещением его на планке 3, а фиксируют с помощью болта 6. Если плунжер легко доходит до упора, то навеску следует увеличить.

Аспиратор действует по принципу сосуда Мариотта и обеспечивает постоянную скорость фильтрования воздуха через слой порошка. Перед проведением анализа из аспиратора вынимают пробку 13, наливают в него дистиллированную воду примерно до показанного уровня и вставляют пробку обратно. В манометр 14 наливают подкрашенную дистиллированную воду с двумя-тремя каплями концентрированной соляной кислоты и устанавливают его на нуль, передвигая при этом сосуд 10 в вертикальной плоскости. Открывают кран аспиратора 11, и по трубе 15 начинает течь вода в стакан, установленный под аспиратором. При достижении стабильного разрежения, измеряемого манометром, записывают показания прибора и измеряют расход воды. Для проверки герметичности соединений после заливки воды в аспиратор гильзу плотно закрывают пробкой и, открыв кран аспиратора, ожидают прекращения выхода воды. Если течение воды из аспиратора не прекращается, проверяют герметичность всех соединений. Температуру измеряют термометром 16.

Правильность показания прибора проверяется пяти-шестикратным контрольным измерением удельной поверхности эталонного порошка с известной удельной поверхностью при толщине его слоя 30 мм. Затем вычисляют поправочный коэффициент a = Sэ/So, где Sэ — удельная поверхность эталонного порошка; Sо — удельная поверхность, полученная в результате пяти-шестикратного измерения.

Если значение коэффициента а отличается от 1 на ±0,05 и более, то он вводится в расчетную формулу.

Читайте также:  Техника прыжок через планку способом перешагивания

Удельную поверхность S (см2/г) материала рассчитывают по формуле:

где рн — насыпная плотность материала в состоянии уплотнения, г/см3.

Средний диаметр зерна сферической формы d (мкм) определяется по формуле

где h и m— соответственно высота слоя минерала и его масса; о — площадь поперечного сечения кюветы; K — вязкость воздуха.

Постоянную прибора К определяют градуировкой по порошку с известной удельной поверхностью. Для средней и нижней рисок постоянная прибора различна. После градуировки нельзя изменять длину резиновых трубок или заменять их на трубки другого диаметра. Другие детали прибора также заменять не рекомендуется. В противном случае необходимо снова отградуировать прибор.

Для изучения исследуемого материала с удельной поверхностью менее 500 см2/г применяются приборы (рис. 3.49) с пористой перегородкой 5, у которых разрежение создается аспиратором (сосудом Мариотга) 1. Кюветы 4 у этих приборов более высокие, так как требуются большие навески минералов. Воздухопроницаемость определяют по скорости вытекания жидкости из аспиратора и измерению разрежения под слоем по манометру 2. Приборы, основанные на фильтрации газа, необходимо периодически проверять на герметичность. Для этого в кювету вставляют пробку и создают разрежение грушей или аспиратором. При хорошей герметизации приборов разрежение остается постоянным длительное время.

Прибор АДП-1 предназначен для определения внешней удельной поверхности дисперсных материалов от 50 до 15000 м2/кг (рис. 3.50). Он состоит из металлической кюветы 1 для размещения испытываемого образца, на внешней поверхности которой нанесена миллиметровая шкала, плунжера 2 с нониусом для уплотнения пробы и определения ее высоты, стеклянного манометра 3 с метками, крана 4, резиновой груши 5 для создания разрежения воздуха под образцом, соединительных трубок.

Пробу, подготовленную для испытаний, высушивают в сушильном шкафу до постоянной массы при (105+5) °С. Из высушенной и охлажденной пробы подготавливают 2 навески для определения плотности и 2 для определения удельной поверхности.

Масса т (кг) навески:

где р — истинная плотность сырья, кг/м3; n — коэффициент, характеризующий насыпную плотность и дисперсность сырья.

Для большинства высокодисперсных материалов n = 1. Для грубодисперсных материалов n > 1 (рекомендуется n = 3, тогда m = 10р). При анализе материалов с большой пористостью (навеска может не разместиться в кювете или затруднит пользование нониусом) следует принимать n = 0,5—0,8 (рекомендуется 0,5).

При подготовке прибора к работе его проверяют на герметичность. Для этого закрывают кювету резиновой пробкой и создают с помощью груши разрежение. Когда уровень воды в стеклянной трубке достигнет верхней метки I, кран закрывают. При герметичности прибора вода в стеклянной трубке остается на том же уровне. Затем в кювету помещают два бумажных фильтра, вставляют плунжер и проверяют совпадение нулевых меток нониуса и шкалы на кювете.

При проведении испытаний на дно кюветы помещают бумажный фильтр, высыпают приготовленную навеску и разравнивают ее легким постукиванием по кювете. Сверху помещают второй фильтр и вручную с помощью плунжера уплотняют навеску. Определяют высоту слоя уплотненной навески по нониусу и шкале на кювете. Удаляют плунжер из кюветы, открывают кран и создают разрежение под слоем навески в кювете. Когда уровень воды в стеклянной трубке достигнет нижнего края верхнего резервуара, кран закрывают и определяют по секундомеру время прохождения мениска воды в трубке между двумя верхними или нижними метками в зависимости от скорости движения мениска. При быстром (

Читайте также:  Способы цепных подстановок абсолютных разниц относительных разниц

Источник

Методы определения удельной поверхности.

Sуд может быть определена расчетным и экспериментальным методами.

Расчетные методы:

— по гранулометрическому составу пород

— по проницаемости и пористости

— формулы определения указаны выше

Более точны результаты экспериментальных методов:

2) адсорбции меченных атомов

3) адсорбции красителей

Первый метод основан на исп-ии ф-лы Дерягина. В соответствии с этой ф-лой расход разряженного газа при кнудсеновском режиме подчиняется следующему закону.

Кнудсеновский режим – это режим, когда длина свободного пробега мол. газа при фильтрации соизмерима с диаметром порового канала

(10)

Q – расход газа, [м 3 /с]

M – мол-ая масса газа

R – универсальная газовая постоянная, [Дж/ кг·К]

T — абсолютная температура , [К]

Sуд – удельная поверхность, [м 2 / м 3 ]

— градиент давления, [па/м]

Второй метод меченных атомов: при этом методе исп-ся радиоактивные вещества. Уд. пов-ть после адсорбции радиоактивного вещества на пов-ти пор определяют по формеле:

Sуд = (11)

Sуд – удельная поверхность, [м 2 / м 3 ]

N – число Авагадро

ω — площадь, занимаемая 1 ой молекулой на пов-ти кристалла

aω – число молей атомов в-ва, адсорб-го на внутр-ей пов-ти пор

Третий метод занимает особое место по точности. Метод идентичен вышеназванному, получил широкое распр-ие в силу своей безопасности и возможности использования веществ с молекулами малой площадью посадки.

Водонефтегазоносность

продуктивных коллекторов.

До формирования нефтяных и газовых залежей в пластах находится вода. Нефть и газ при миграции вытесняли воду из пласта НО много замещения воды не происходило, часть ее оставалась в порах. Эту воду наз-ют остаточной водой, погребенной, либо реликтовой водой.

Содержание остаточной воды колеблется от 0 до 72 %, в ср. изменяясь от 6-8 % до 24 %. Эта вода находится в пластах в виде пленки на гидрофильной пов-ти пор в виде отдельных капель в виде столбиков в узких порах, где прочно удерживаются кап-ми и адсорбц-ми силами.

Для более точной оценки запасов нефти и газа появляется необходимость определения содержания воды в нефтегазосодержащем пласте. С этой целью введены 3-и коэф-та:

Коэф-том нефтенасыщенности наз-ся отношение Vн к Vпор или н. в ед Vпор

до 70. 90 %

Аналогично определяется коэф-нт водонасыщенности

до 35. 95 %

Коэф-нт газонасыщенности – это отношение Vг при пл. усл. к Vпор , или содержание Vг в ед Vпор

до 72 %

Определение НГВ насыщенности

Различают прямые и косвенные методы:

Прямые :

— метод экстрагирования породы с исп-ия аппаратов Дина и Старка, Закса

— метод отгонки паров жидкости путем увеличения температуры до 500 – 600 0 С с последующим улавливанием и конденсацией паров воды и фракций нефти.

Косвенные:

— метод центрифуг-ия или центробежный

— метод капиллярного давления полупроницаемых мембран

Эти коэф-ты НГВ насыщенности предназначены для оценки запасов нефти и газа

геол-ие запасы в пор-ой среде

Qг.з. = В · h · m · Sн

При оценке качества разр-ки мест-ий , в частное для опр-ия текущего и конечного коэф-та нефтеотдачи

η = , где SHo – коэф-нт начальной нефтенасыщенности

SHoс – коэф-нт остаточной нефтенасыщенности

Источник

Оцените статью
Разные способы