Способ определения динамической вязкости
Методы определения динамической вязкости на ротационном вискозиметре
Petroleum products. Methods of test for determination of dynamic viscosity
by rotary viscosimeter
Дата введения 1988-07-01
1. РАЗРАБОТАН И ВНЕСЕН Министерством нефтеперерабатывающей и нефтехимической промышленности СССР
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 28.05.87 N 1753
4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка
Номер пункта, подпункта
5. Ограничение срока действия снято по протоколу N 2-92 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 2-93)
Настоящий стандарт распространяется на нефтепродукты и устанавливает методы определения динамической вязкости на ротационном вискозиметре: метод А — для смазочных масел (моторных и трансмиссионных) при низкой температуре и метод Б — для мазутов.
Стандарт не распространяется на авиационные масла.
Сущность метода состоит в регистрации момента сопротивления вращению внутреннего цилиндра или конуса измерительного устройства с испытуемым нефтепродуктом при различных градиентах скорости сдвига и расчете напряжения сдвига и динамической вязкости.
1. ОПРЕДЕЛЕНИЕ ДИНАМИЧЕСКОЙ ВЯЗКОСТИ СМАЗОЧНЫХ МАСЕЛ
ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ (метод А)
Отбор проб — по ГОСТ 2517.
1.2. Аппаратура, материалы и реактивы
Устройство для измерения вязкости, включающее в себя:
ротационный вискозиметр типа Реотест 2.1 или его последующих модификаций с измерительными устройствами цилиндрическими или для трансмиссионных масел и их основ и конусом-плитой — для моторных масел и их основ (конус ).
Применение конкретного измерительного устройства ( или ) и температура испытания должны быть оговорены в нормативно-технической документации на продукт; поверка вискозиметра — по приложению 3.
термометр сопротивления и измерительный мост класса не ниже 0,1 для контроля температуры в измерительном устройстве конус-плита;
жидкостный циркуляционный термостат, обеспечивающий температуру от минус 60 до плюс 20 °С погрешностью не более 0,5 °С;
контактный термометр для измерения температуры от минус 58 до плюс 30 °С с ценой деления 1 °С;
контрольный термометр для циркуляционных термостатов для измерения температуры от минус 60 до плюс 30 °С с ценой деления 0,5 °С;
комплект контрольных термометров для термостатирующих камер цилиндрических измерительных устройств для измерения температуры от минус 60 до плюс 30 °С с ценой деления 0,5 °С;
блок измерения для регистрации момента сопротивления вращению.
Сосуд Дьюара или емкость любого типа для хранения сухого льда.
Бензин-растворитель для резиновой промышленности.
Спирт этиловый ректификованный технический по ГОСТ 18300 или спирт этиловый технический по ГОСТ 17299.
Двуокись углерода твердая по ГОСТ 12162.
Колба Кн-1-250 или Кн-2-250 по ГОСТ 25336.
Бумага фильтровальная лабораторная по ГОСТ 12026.
Воронка В-100-150ХС или В-100-200ХС по ГОСТ 25336.
Сушильный шкаф, обеспечивающий поддержание температуры с погрешностью не более 5 °С.
Стакан типа В или Н любого исполнения вместимостью 50 или 150 см по ГОСТ 25336.
1.3. Подготовка к испытанию
1.3.1. Пробу, отобранную по ГОСТ 2517, тщательно перемешивают и фильтруют через фильтровальную бумагу. Для испытания в цилиндрическом устройстве готовят 120 см , в цилиндрическом устройстве Н — 50 см и в паре конус-плита — 20 см масла.
1.3.2. Испытуемое масло наливают в стакан, нагревают в сушильном шкафу до 60-70 °С и выдерживают при указанной температуре 15-20 мин, периодически помешивая.
1.3.3. Нагретый стакан с маслом вынимают из сушильного шкафа и охлаждают до температуры окружающей среды без перемешивания.
1.3.4. Устройство для измерения вязкости подготавливают в соответствии с инструкцией по эксплуатации.
1.3.5. Величину зазора в паре конус-плита проверяют после каждого отсоединения конуса от измерительного вала.
1.3.6. Все детали измерительных устройств промывают растворителем, просушивают и собирают.
1.3.7. Собранное измерительное устройство заполняют испытуемым маслом при температуре окружающей среды в соответствии с инструкцией по его эксплуатации.
1.3.8. Перед проведением последующих испытаний необходимо тщательно удалить влагу с рабочих поверхностей вискозиметра, когда их температура сравняется с температурой окружающей среды.
1.4. Проведение испытания
1.4.1. Измерительное устройство соединяют с термостатом, охлаждают до температуры, указанной в нормативно-технической документации на продукт, со скоростью 1-2 °С в минуту, выдерживают при этой температуре в течение 30 мин с погрешностью не более 0,5 °С.
1.4.2. Испытание проводят в соответствии с инструкцией по эксплуатации вискозиметра.
1.4.3. Регистрируют угол относительного вращения внутреннего цилиндра или конуса при температуре и градиенте скорости сдвига, указанных в нормативно-технической документации на продукцию.
1.4.4. При использовании измерительных устройств и за результат принимают установившееся значение, которое сохраняется неизменным в течение 1 мин. Если значение не устанавливается, то показание регистрируют через 3 мин.
При использовании пары конус-плита регистрируют значение через минуту после начала вращения конуса.
Значение определяют с точностью до 0,5 деления шкалы прибора.
Форма записи результатов испытания приведена в приложении 1.
1.4.5. Испытание повторяют на новой порции испытуемого масла по пп.1.3.4-1.4.4.
1.5. Обработка результатов
1.5.1. За результат испытания принимают среднее арифметическое результатов двух последовательных определений.
1.5.2. Динамическую вязкость ( ) в паскаль-секундах вычисляют по формуле
, (1)
где — напряжение сдвига, Па;
— градиент скорости сдвига, с .
1.5.3. Напряжение сдвига ( ) в паскалях для цилиндрического измерительного устройства вычисляют по формуле
, (2)
где — константа измерительного устройства, указанная в паспорте прибора, дин/см ·деление шкалы;
— относительный угол вращения на блоке измерения, деления шкалы;
Источник
Вязкость жидкости
Вязкость жидкости – это свойство реальных жидкостей оказывать сопротивление касательным усилиям (внутреннему трению) в потоке. Вязкость жидкости не может быть обнаружена при покое жидкости, так как она проявляется только при её движении. Для правильной оценки таких гидравлических сопротивлений, возникающих при движении жидкости, необходимо прежде всего установить законы внутреннего трения жидкости и составить ясное представление о механизме самого движения.
Содержание статьи
Физический смысл вязкости
Для понятия физической сущности такого понятия как вязкость жидкости рассмотрим пример. Пусть есть две параллельные пластинки А и В. В пространство между ними заключена жидкость: нижняя пластинка неподвижна, а верхняя пластинка движется с некоторой постоянной скоростью υ1
Как при этом показывает опыт, слои жидкости, непосредственно прилегающие к пластинкам (так называемые прилипшие слои), будут иметь одинаковые с ним скорости, т.е. слой, прилегающий к нижней пластинке А, будет находиться в покое, а слой, примыкающий к верхней пластинке В, будет двигаться со скоростью υ1.
Промежуточные слои жидкости будут скользить друг по другу, причем их скорости будут пропорциональны расстояниям от нижней пластинки.
Ещё Ньютоном было высказано предположение, которое вскоре подтвердилось опытом, что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. Если взять площадь соприкосновения равной единице, это положение можно записать в виде
где τ – сила сопротивления, отнесенная к единице площади, или напряжение трения
μ – коэффициент пропорциональности, зависящий от рода жидкости и называемый коэффициентом абсолютной вязкости или просто абсолютной вязкостью жидкости.
Величину dυ/dy – изменение скорости в направлении, нормальном к направлению самой скорости, называют скоростью скольжения.
Таким образом вязкость жидкости – это физическое свойство жидкости, характеризующее их сопротивление скольжению или сдвигу
Вязкость кинематическая, динамическая и абсолютная
Теперь определимся с различными понятиям вязкости:
Динамическая вязкость. Единицей измерения этой вязкости является паскаль в секунду (Па*с). Физический смысл состоит в снижении давления в единицу времени. Динамическая вязкость характеризует сопротивление жидкости (или газа) смещению одного слоя относительно другого.
Динамическая вязкость зависит от температуры. Она уменьшается при повышении температуры и увеличивается при повышении давления.
Кинематическая вязкость. Единицей измерения является Стокс. Кинематическая вязкость получается как отношение динамической вязкости к плотности конкретного вещества.
Определение кинематической вязкости производится в классическом случае измерением времени вытекания определенного объема жидкости через калиброванное отверстие при воздействии силы тяжести
Абсолютная вязкость получается при умножении кинематической вязкости на плотность. В международной системе единиц абсолютная вязкость измеряется в Н*с/м2 – эту единицу называют Пуазейлем.
Коэффициент вязкости жидкости
В гидравлике часто используют величину, получаемую в результате деления абсолютной вязкости на плотность. Эту величину называют коэффициентом кинематической вязкости жидкости или просто кинематической вязкостью и обозначают буквой ν. Таким образом кинематическая вязкость жидкости
где ρ – плотность жидкости.
Единицей измерения кинематической вязкости жидкости в международной и технической системах единиц служит величина м2/с.
В физической системе единиц кинематическая вязкость имеет единицу измерения см 2 /с и называется Стоксом(Ст).
Вязкость некоторых жидкостей
Жидкость | t, °С | ν, Ст |
Вода | 0 | 0,0178 |
Вода | 20 | 0,0101 |
Вода | 100 | 0,0028 |
Бензин | 18 | 0,0065 |
Спирт винный | 18 | 0,0133 |
Керосин | 18 | 0,0250 |
Глицерин | 20 | 8,7 |
Ртуть | 0 | 0,00125 |
Величину, обратную коэффициенту абсолютной вязкости жидкости, называют текучестью
Как показывают многочисленные эксперименты и наблюдения, вязкость жидкости уменьшается с увеличением температуры. Для различных жидкостей зависимость вязкости от температуры получается различной.
Поэтому, при практических расчетах к выбору значения коэффициента вязкости следует подходить очень осторожно. В каждом отдельном случае целесообразно брать за основу специальные лабораторные исследования.
Вязкость жидкостей, как установлено из опытов, зависит так же и от давления. Вязкость возрастает при увеличении давления. Исключение в этом случае является вода, для которой при температуре до 32 градусов Цельсия с увеличением давления вязкость уменьшается.
Что касается газов, то зависимость вязкости от давления, так же как и от температуры, очень существенна. С увеличением давления кинематическая вязкость газов уменьшается, а с увеличением температуры, наоборот, увеличивается.
Методы измерения вязкости. Метод Стокса.
Область, посвященная измерению вязкости жидкости, называется вискозиметрия, а прибор для измерения вязкости называется вискозиметр.
Современные вискозиметры изготавливаются из прочных материалов, а при их производстве используются самые современные технологии, для обеспечение работы с высокой температурой и давлением без вреда для оборудования.
Существует следующие методы определения вязкости жидкости.
Капиллярный метод.
Сущность этого метода заключается в использовании сообщающихся сосудов. Два сосуда соединяются стеклянной трубкой известного диаметра и длины. Жидкость помещается в стеклянный канал и за определенный промежуток времени перетекает из одного сосуда в другой. Далее зная давление в первом сосуде и воспользовавшись для расчетов формулой Пуазейля определяется коэффициент вязкости.
Метод по Гессе.
Этот метод несколько сложнее предыдущего. Для его выполнения необходимо иметь две идентичные капиллярные установки. В первую помещают среду с заранее известным значением внутреннего трения, а во вторую – исследуемую жидкость. Затем замеряют время по первому методу на каждой из установок и составляя пропорцию между опытами находят интересующую вязкость.
Ротационный метод.
Для выполнения этого метода необходимо иметь конструкцию из двух цилиндров, причем один из них должен быть расположен внутри другого. В промежуток между сосудами помещают исследуемую жидкость, а затем придают скорость внутреннему цилиндру.
Жидкость вращается вместе с цилиндром со своей угловой скоростью. Разница в силе момента цилиндра и жидкости позволяет определить вязкость последней.
Метод Стокса
Для выполнения этого опыта потребуется вискозиметр Гепплера, который представляет из себя цилиндр, заполненный жидкостью.
Вначале делаются две пометки по высоте цилиндра и замеряют расстояние между ними. Затем шарик определенного радиуса помещается в жидкость. Шарик начинает погружаться в жидкость и проходит расстояние от одной метки до другой. Это время фиксируется. Определив скорость движения шарика затем вычисляют вязкость жидкости.
Видео по теме вязкости
Определение вязкости играет большую роль в промышленности, поскольку определяет конструкцию оборудования для различных сред. Например, оборудование для добычи, переработки и транспортировки нефти.
Источник