Способы очистки отработанных масел от загрязнений
Способы очистки смазочных масел от загрязнений делятся на химические, физические и физико-химические.
К химическим способам очистки относятся кислотная и щелочная очистки, восстановление масел гидридами металлов. Применение этих методов позволяет удалить из масел асфальто-смолистые, кислые, некоторые гетероорганические соединения, а также воду.
Кислотная очистка – это обработка масла концентрированной серной кислотой. Сущность метода заключается в том, что серная кислота по-разному взаимодействует с углеводородами и примесями, находящимися в очищенном продукте.
Наиболее энергично она реагирует с непредельными углеводородами. При нормальной температуре серная кислота не вступает в соединения с алкановыми и циклановыми углеводородами, но при повышенной – взаимодействует и с ними, частично растворяет ароматические углеводороды или образует с ними сульфосоединения. Масла при очистке нагревают до 40. 50 °С для уменьшения вязкости и улучшения перемешивания с серной кислотой. Эффективность кислотной очистки определяется количеством и концентрацией кислоты, временем контактирования кислоты с маслом, температурой и режимом процесса. Используется 96 %-ная серная кислота, расход составляет 3. 5 % от массы очищаемого продукта, время перемешивания 25. 30 мин.
Щелочная очистка заключается в обработке масла гидроокисью натрия (едкий натр), карбонатом натрия (кальцинированная сода) и тринатрийфосфатом. Щёлочь взаимодействует с органическими, нафтеновыми, ди- и оксикарбоновыми и другими кислотами, в результате чего образуются водорастворимые натриевые соли (мыла), которые вместе с водным раствором щёлочи удаляются после отстаивания.
Восстановление масел гидридами металлов заключается в обработке отработанных масел соединениями кальция, алюминия, лития. При этом из масел удаляется не только вода, но и карбоновые кислоты. Однако реагенты довольно дороги, кроме того, масло требует очистки от твердых продуктов реакции, а выделяющиеся в результате реакции газообразные вещества приходится нейтрализовать.
Физико-химические методы основаны, главным образом, на использовании коагулянтов, адсорбентов и ионообменных смол.
Коагуляция заключается в укрупнении и выпадении в осадок асфальто-смолистых веществ, находящихся в масле в мелкодисперсном состоянии, близком к коллоидному. В качестве коагулянтов используют неорганические и органические электролиты, поверхностно-активные вещества, не являющиеся электролитами, коллоидные растворы поверхностно-активных веществ и гидрофильные высокомолекулярные соединения.
Адсорбция основана на способности веществ, применяемых в качестве адсорбентов, удерживать загрязняющие соединения на наружной поверхности гранул и внутренней поверхности капилляров, пронизывающих гранулы. В качестве адсорбентов применяют как природные вещества (отбеливающие глины), так и синтетические (силикагель, окись алюминия, синтетические цеолиты).
Ионообменная очистка основана на способности ионообменных смол (ионитов) удерживать те загрязнения, которые в растворенном состоянии диссоциируют на ионы. Иониты представляют собой твёрдые гигроскопические гели, нерастворимые в воде и углеводородах. Процесс ионообмена можно осуществлять в статических и динамических условиях. В статических условиях масло, содержащее загрязнения в виде раствора электролита, перемешивают с ионитом, активные группы ионита переходят в стабильную солевую форму, не склонную к гидролизу при промывке. Во втором случае ионообмен происходит в полости, заполненной ионитом, при пропускании через него загрязненного масла.
Физические способы очистки не затрагивают химической основы очищаемых масел. При этом удаляются механические примеси (пыль, песок, частицы металла), а также горючее, вода, смолистые асфальтообразные и коксообразные вещества.
Наиболее распространёнными физическими способами очистки отработанных масел являются фильтрация и очистка в силовых полях. Промывка отработанного масла водой для удаления из него кислых продуктов (водорастворимых низкомолекулярных
кислот, а также солей органических кислот, растворимых в воде) заключается в пропускании через слой масла воды, которая увлекает и уносит с собой загрязняющие примеси. Этот метод получил широкое распространение для промывки турбинных
масел. Эффективность удаления из масла продуктов окисления и углистых примесей в решающей степени определяется качеством смешения воды с маслом.
Отгонка предназначена для удаления из масла влаги, остатков горючего. Влагу выпаривают при атмосферном давлении или в вакууме, а также удаляют при продувании масел горячим воздухом или инертным газом. Во избежание вспенивания и
окисления масло нагревают до 80. 90 °С при частичном вакууме (240 ГПа). Отгон горючего основан на разности температур кипения горючего и масла. При нагревании отработанного масла в первую очередь из него испаряется топливо, так как температура кипения его значительно ниже температуры кипения масла.
Гравитационная очистка является одним из наиболее простых физических способов очистки нефтяных масел. Она осуществляется в результате выпадения из масла взвешенных твердых частиц загрязнений и микрокапель воды под действием силы
тяжести. Такой процесс получил название отстаивания (седиментации). В общем случае скорость осаждения частиц зависит от высоты столба масла, размера частиц, отношения плотностей и вязкости осаждаемых частиц и масла. Увеличение температуры масла повышает скорость осаждения частиц, однако верхним пределом повышения температуры является 90 °С. При большой температуре масло вскипает. Скорость осаждения частиц подчиняется закону Стокса. Так, железная частица радиусом 10 мкм при температуре масла 80 °С осаждается со скоростью 55 м/ч. Процесс осаждения более мелких частиц может продолжаться несколько десятков часов. Ещё медленнее идет процесс осаждения алюминиевых частиц.
Процесс очистки масел от механических примесей протекает с гораздо большим эффектом в поле центробежных сил. Как в отстойниках, так и в центрифугах жидкость очищается только от тех частиц, плотность которых больше плотности жидкости.
Скорость осаждения частиц в центрифугах, имеющих частоту вращения ротора 5000. 8000 мин–1, в 1000. 2000 раз больше скорости осаждения твёрдых частиц в гравитационном поле отстойников. Для создания центробежного поля могут быть использованы два способа – вращательное движение потока масла в неподвижном аппарате или подача масла во вращающийся аппарат. В первом случае применяют гидроциклоны, во втором – центрифуги. По организации потока жидкости центробежные очистители делятся на центрифуги с ротором обычным однокамерным, многокамерным, со спиральной камерой, с пакетом конических тарелок.
Для удаления из нефтяных масел твёрдых ферромагнитных частиц можно проводить очистку в магнитном поле, создаваемом постоянными или электрическими магнитами. Помимо ферромагнитных частиц магнитные фильтры улавливают
также сцепленные с ними немагнитные частицы. Этому способствует эффект электризации немагнитных частиц. Магнитные очистители улавливают мелкие ферромагнитные частицы размером до 0,4 мкм, которые практически не задерживаются другими средствами очистки.
Вибрационная очистка масел основана на явлении коагуляции твёрдых частиц в поле колебаний с дальнейшим удалением их из жидкости. Применяются два способа возбуждения ультразвуковых колебаний в масле – гидродинамический и механический. В первом случае колебания создаются гидродинамическими излучателями, во втором – магнитострикционными или пьезоэлектрическими преобразователями, соединенными с колебательными элементами. Упругие колебания применяют в ряде случаев для разрушения молекул смол, загрязняющих масла и другие кислородосодержащие соединения.
Имеются также данные, что под действием ультразвуковых колебаний в некоторых условиях происходит не коагуляция, а диспергирование частиц загрязнений. Широкого применения на практике данный способ не нашёл.
Для очистки отработанных масел может применяться электростатическая очистка, использующая силы электрического притяжения. Загрязняющие частицы, перемещаясь вместе с жидкостью, всё время трутся о нее и под действием этого трения получают отрицательный или положительный электрический заряд. Попадая в электрическое поле, эти частицы перемещаются, притягиваясь к разноименно заряженным электродам.
Фильтрация заключается в отделении взвешенных в масле твёрдых частиц при прохождении двухфазной системы (масло с диспергированными или эмульгированными в нем загрязнениями) через пористый фильтрующий материал. Благодаря технической простоте, возможности широкой вариации и высокой надёжности фильтрация как способ очистки нефтепродуктов является наиболее распространённой. Средства фильтрации различных типов широко применяются на всех стадиях очистки (заправка, системы смазки и топливоподачи, гидроприводы и т.д.).
Описанные способы эффективны при очистке или регенерации отработанных масел на крупных маслорегенераторных станциях или заводах. Однако при этом возникают значительные трудности со сбором и транспортировкой сырья. В ряде случаев (в частности, в сельскохозяйственном производстве) из-за высокой рассредоточенности техники и сравнительно небольших объёмов отработанных масел в структурных подразделениях сбор и транспортировка сырья на крупные станции очистки оказываются трудноосуществимыми. При этом всегда проявляются следствия обезличивания – качество сырья крайне низкое, получить хороший продукт не удается.
Масло, слитое из двигателя с соблюдением необходимых мер против дополнительного загрязнения, как правило, имеет значительный запас действующих присадок и бракуется в основном из-за сильной загрязнённости продуктами старения масла и износа деталей машин, почвенной пыли, разжижения топливом, иногда оно содержит и воду. Удалив воду и основную массу загрязнений, ускоряющих износ деталей, но сохранив при этом активную часть присадок, очищенное масло можно использовать в менее нагруженных узлах и агрегатах сельскохозяйственной техники. В связи с этим простые, доступные широкому потребителю способы очистки отработанных моторных масел могут принести большой экономический эффект.
Источник
Способ очистки смазочных материалов
Утилизация отработанного масла сама по себе требует финансовых затрат, но еще более неэкономичным оказывается одноразовое использование смазочных масел, стоимость которых может быть очень высока в связи со сложностью их производства. Экономичнее проводить регенерацию смазочных масел при которой из них удаляются скопившиеся загрязнители, и оно может быть использовано повторно и возвращено в систему смазки.
Конкретный метод очистки выбирается исходя из характера загрязнения, общего состава масла и требуемой степени очистки. При комплексном загрязнении может быть использовано несколько стадий очистки масла с использованием разных методов. Работает общий принцип, что в первую очередь проводят очистку от наиболее крупных и наиболее легко отделяемых загрязнителей, после чего следует стадия тонкой очистки. Если установка очистки ориентирована на работу с различными сортами масла и видами их загрязнителей, то в ее состав могут входить аппараты очистки различных конструкций, подключаемых в работу по необходимости в зависимости от конкретного случая.
Все методы очистки масел принято делить на три общих группы:
Физические методы
При очистке физическими методами масло не претерпевает каких-либо химических изменений, а процесс осуществляется с применением определенного физического воздействия. Может быть использовано поле гравитационных или центробежных сил, электрическое или магнитное поле и т.д. Также применяются различные теплообменные процессы, фильтрация и вибрационное воздействие. Методы этой группы обычно выступают в качестве вступительной стадии очистки, на которой удаляются механические примеси, жидкие загрязнители (включая воду) и газовые включения. Наиболее распространенные физические методы очистки включают в себя следующие позиции:
Отстаивание
Данный метод является наиболее простым в реализации, но имеет небольшую производительность из-за длительности процесса. Отделению подвергаются относительно крупные механические или водные включения, оседающие на дно под действием сил земного притяжения. Отстаивание происходит в аппаратах простой конструкции, называемых отстойниками. Особенности этого метода делают его предпочтительным в качестве предварительного этапа очистки с целью снизить нагрузку на последующие аппараты тонкой очистки.
Сепарация
Это процесс центрифугирования масла, который принципиально схож с отстаиванием, однако вместо относительного слабого поля сил притяжения земли используется поле центробежных сил, значения которых могут быть на несколько порядков выше, что существенно интенсифицирует процесс разделения. Платой за ускорение процесса становится использование более сложного оборудования – центрифуг, требующих дополнительного источника энергии (обычно электродвигатели) для функционирования.
Фильтрация
Она заключается в пропускании загрязненного масла через объем фильтрующего материала, пористая или сетчатая структура которого позволяет ему пропускать компоненты масла и задерживать механические и часть жидких включений. Степень очистки зависит как от размеров отделяемых частиц, так и от размеров пор или ячеек сетки. В качестве фильтрующего материала могут использоваться металлические или пластмассовые сетки, керамика, ткани, бумага и более сложные композитные материалы. Аппарат для проведения фильтрации называется фильтром. Правильный подбор фильтрующего материала позволяет настроить фильтр как для грубой, так и тонкой очистки. Основным недостатком данного процесса является необходимость регенерации фильтрующих перегородок, подверженных закупориванию по ходу применения, либо же их утилизации в случае невозможности восстановления работоспособности.
Физико-химические методы
При использовании методов данной группы компоненты масла могут претерпевать частичные химические изменения в ходе очистки. Как правило они более сложные в реализации и затратные в сравнении с физическими, однако обеспечивают более глубокую и полною очистку масел. Физико-химическими методами очистки являются:
- адсорбция;
- коагуляция;
- термовакуумная сушка;
- селективное растворение.
Адсорбция
Адсорбционная очистка масла заключается в его пропускании через слой адсорбента – высокопористого вещества, структура которого позволяет задерживать в себе ряд растворенных примесей. В качестве такого высокопористого материала могут выступать природные материалы, такие как отбеливающая глина и бокситы, а также специально подобранные материалы, такие как силикагель или окись алюминия. Эффективность адсорбционной очистки сильно зависит от соотношения размеров пор и задерживаемых частиц. Высокая степень очистки данных методов имеет обратную сторону в виде дороговизны производства адсорбирующих материалов, которые в ходе эксплуатации требуют периодической регенерации, а в худшем случае являются одноразовыми. Природные адсорбенты обходятся дешевле, но и эффективность их заметно уступает искусственным. Аппараты для проведения адсорбции называются адсорберами.
Коагуляция
Метод направлен скорее на усиление эффективности ряда физических методов, так как в его основе лежит принцип слипания и укрупнения (коагуляции) коллоидных частиц загрязнителей масла, неотделимых или трудно отделимых фильтрацией и отстаиванием, которые после укрупнения уже могут быть отделены вышеназванными физическими методами. Для осуществления коагуляции используют ряд физических воздействий (электрический ток, перемешивание, сильный нагрев или охлаждение и т.д.), а также применяют специальные вещества коагулянты.
Термовакуумная сушка
Данным образом из масла удаляется большая часть воды и растворенных газов. В основе метода лежит разность температур кипения воды и масла, что дополнительно усиливается приложением низкого давления к камере, в которой происходит испарение воды. Масло дополнительно рассеивают, чтобы многократно увеличить площадь испарения, чем обеспечивается более полное и быстрое протекание процесса очистки масла. Необходимые для проведения процесса аппараты имеют относительно простую конструкцию и достаточно просты в эксплуатации, однако необходимо контролировать уровень их герметизации и не допускать попадания атмосферного воздуха.
Селективное растворение
Процесс основан на использовании селективных растворителей, которые должны не смешиваться с маслом и значительно лучше растворять в себе те вещества, подлежащие удалению из масла. При смешении масла и растворителя создается развитая поверхность контакта фаз, через которую происходит интенсивный переход загрязнителя из масла в растворитель. Затем фазы разделяются, после чего растворитель также может быть очищен от растворенного в нем загрязнителя и использован повторно для очистки масла. Метод имеет высокую эффективность, однако при наличии в масле присадок, что случается довольно часто, его применение недопустимо, так как в большинстве случаев вместе с загрязнителями в селективные растворители переходят и присадки, из-за чего масло теряет свои основные качества.
Химические методы
Методы данной группы используют различные реагенты, вступающие в химические реакции с загрязняющими компонентами масла. То есть обязательно наличие химических превращений в масле. Выделяют кислотную и щелочную обработку.
Кислотная обработка
В большинстве случаев применяется серная кислота. Данный метод уже далеко не нов, однако временем подтвердил свою эффективность. Его применяют для удаления асфальто-смолистых веществ, ненасыщенных углеводородов и других соединений, выпадающий в осадок при взаимодействии с серной кислотой. Такой осадок, достаточно легко отделяемый от масла, принято называть кислым гудроном. В качестве завершающей стадии использую щелочную обработку для нейтрализации остатков кислого гудрона и самой кислоты.
Щелочная обработка
Ее используют при сильной изношенности масла, когда требуется удалить различные органические кислоты и эфиры. При этом образуются химические соединения, легко растворяющиеся в воде, что делает эффективной последующую промывку. Как уже упоминалось выше, щелочная обработка может выступать в качестве завершающей стадии кислотной обработки, но также может выступать и в роли самостоятельного этапа очистки масла.
Источник