Способ очистки газа от сероводорода

Технологии очистки природного газа от сероводорода

В нормальных условиях — бесцветный газ с неприятным запахом тухлых яиц. При большой концентрации — отравляющее вещество.

Основные применяемые и разрабатываемые технологии очистки природного газа от сероводорода

В настоящее время для очистки природного газа от H2S и СО2 используют следующие процессы:

  • хемосорбционные процессы, основанные на химическом взаимодействии H2S и СО2 с активной частью абсорбента;
  • процессы физической абсорбции, в которых извлечение кислых компонентов происходит за счет их растворимости в органических поглотителях;
  • комбинированные процессы, использующие одновременно химические и физические поглотители;
  • окислительные процессы, основанные на необратимом превращении поглощенного сероводорода в серу;
  • очистка природного газа от сероводорода может производиться и с использованием адcорбционных процессов, основанных на извлечении компонентов газа твердыми поглотителями — адсорбентами.

Очистка природного и других газов от сероводорода может осуществляться разными методами.

Выбор процесса очистки природного газа от сернистых соединений в каждом конкретном случае зависит от многих факторов, основными из которых являются:

  • состав и параметры сырьевого газа,
  • требуемая степень очистки и область использования товарного газа,
  • наличие и параметры энергоресурсов, отходы производства и др.

Анализ мировой практики, накопленной в области очистки природных газов, показывает, что основными процессами для обработки больших потоков газа являются абсорбционные с использованием химических и физических абсорбентов и их комбинации.

Окислительные и адсорбционные процессы применяют, как правило, для очистки небольших потоков газа, либо для тонкой очистки газа.

Для сравнения в таблице приведен перечень основных процессов, применяемых для очистки различных газов за рубежом, и число действующих установок.

Источник

Методы очистки газа от сероводорода

Для очистки газов от сернистых соединений используются разные методы, наиболее распространенными являются следующие способы: абсорбционные, адсорбционные, окислительные.

Абсорбционные методы подразделяются на хемосорбционные, физические и окислительные.

1. Хемосорбционные методы — основаны на химическом взаимодействии H2S и СО2 с абсорбентом, к ним относятся все щелочные методы, в том числе и амины, а также связывание сероводорода в труднорастворимые сульфиды.

2. Физическая абсорбция – основана на высокой растворимости H2S и СО2 в органических растворителях: метанол, N-метилпироллидон, гликоли, пропиленкарбонат и др. Требования к растворителям: селективность относительно сероводорода, низкая стоимость, доступность, токсикологическая, экологическая и коррозионная безопасность.

3. Окислительные методы – основаны на необратимом превращении H2S в серу элементарную.

К окислительным методам относится процесс Джамарко-Ветрокок, где в качестве абсорбента используется горячий раствор мышьяковых солей щелочного металла, абсорбент токсичен.

Процесс Стретфорд – в качестве абсорбента используется водный раствор натриевых солей двух форм антрахинондисульфоксилот.

В основе абсорбционных методов лежит массообмен, т.е. переход вещества из газообразной в жидкую фазу, осуществляемый через поверхность раздела фаз.

Движущей силой абсорбции является разность концентраций компонента в газовой и жидкой фазах.

Десорбция – обратный процесс, когда поглощенное вещество выделяется из жидкой фазы.

Основной аппарат, предназначенный для абсорбции – абсорбер, представляющий колонны насадочные, тарельчатые, с механическим распыливанием.

Тарельчатые – применяются при высоких скоростях газа, на установках большой производительности, на непенящихся жидкостях. Наиболее распространены колпачковые тарелки, но чаще используют ситчатые.

С механическим распыливанием – когда решающее значение имеет гидравлическое сопротивление, а также когда в газе содержатся твердые частицы (очистка выхлопных газов при атмосферном давлении).

Адсорбционные способы очистки газа от сернистых соединенийв основе этих методов лежит адсорбция – процесс поглощения компонентов газа или жидкости поверхностью твердых тел.

Твердое тело, на поверхности которого происходит концентрация поглощаемого вещества, называется адсорбентом, а само поглощающее вещество –адсорбатом. В качестве адсорбентов используются: цеолиты, активированный уголь, молекулярные сита.

Различают физическую и химическую адсорбцию. Физическая адсорбция – это такая адсорбция, когда молекулы адсорбата и адсорбента не вступают в химическое взаимодействие. Химическая адсорбция – это такая, когда молекулы адсорбента и адсорбата образуют химическое соединение.

Неотъемлемой частью адсорбции является десорбция, т.е. извлечение адсорбата из пор адсорбента и восстановление емкости последнего (регенерация). Процесс десорбции осуществляется главным образом испарением адсорбата нагревом адсорбента.

Адсорбционная очистка применяется, когда требуется достичь более низких концентраций сернистых соединений (тонкая очистка). При очистке газа от сернистых соединений одновременно из него извлекается влага.

Целью очистки от сернистых соединений и влаги является повышение качества газа, а удаление СО2 из газа осуществляют для повышения теплоты сгорания газа.

Адсорбционная очистка применяется для очистки водорода от СО, СО2 и углеводородов с целью повышения его реакционных свойств (степень чистоты водорода достигает 99,9%).

Для выделения н-алканов (парафинов) из ДТ- это основной метод производства жидких парафинов (С1018), процесс осуществляется с помощью цеолита марки А с получением 12-15% мас.жидких парафинов и 85-87%мас. низкозастывающего ДТ. Жидкие парафиновые углеводороды используются для производства моющих веществ.

Адсорбционная очистка применяется для выделения н-алканов из бензиновой фракции с целью повышения концентрации изопарафинов и повышения ОЧ (октанового числа).

Окислительные методы – различают окислительную абсорбцию и прямое окисление сероводорода в газовой фазе. Основаны на окислении сероводорода до серы сульфитов, сульфатов.

Окислительная абсорбция применяется для очистки малосернистых газов и с высоким содержанием диоксида углерода. В качестве абсорбентов используются хелатные комплексы железа, окислы железа III, соединения мышьяка (очистка коксового газа).

Прямое окисление в газовой фазе — это сжигание с применением кислорода до SO2 с последующим каталитическим окислением его до серы.

Источник

Очистка газа от сероводорода

В нефтепромысловом газе наряду с углеводородами иногда встречается сероводород – соединение весьма не прочное, и по­этому количественное его содержание в газе может быть определено более точно на месте отбора пробы газа.

Сероводород горюч, его теплотворная способность при нормаль­ных условиях равна 23135 кДж/м 2 . Он хорошо растворяется в воде. Растворимость H2S в воде при рабс = 1 aт следующая:

Температура, 0 С Растворимость, м 3 /м 3
4,67
2,58
1,66

Сероводород является вредной примесью. Он сам по себе и про­дукт его сгорания сернистый ангидрид (SO2) вызывают отравление людей, животных и растений. Содержание H2S в воздухе от 0,05 до 1,0 %, или от 0,76 до 1,52 г/м 3 , является «опасным. Сернистые соединения (сероуглерод CS2 и др.) также являются вредными Сероводород и сернистые соединения не только ядовиты (токсичны), но и вызывают коррозию стальных труб, резервуаров, компрессоров, фитингов и другого промыслового оборудования. Особенно сильно проявляется их действие, если нефтепромысловый газ имеет повышенную температуру и содержит углекислоту и пары воды. Поэтому газ, используемый как топливо в промышленных топках, не должен содержать сероводорода выше установленного предела, определяемого в каждом отдельном случае условиями производства. Если нефтепромысловый газ используется на производстве, основанном на каталитических реакциях (синтез аммиака и др.), то он вовсе не должен содержать сероводорода. Кроме того, присутствие H,S в газе ускоряет гидратообразование.

В промысловых усло­виях требуется весьма тщательная очистка газа, направляемого: а) в компрессоры, подающие его в пласт для поддержания пласто­вого давления с целью вытеснения нефти из пласта; б) в компрессоры газлифтного цикла; в) в компрессоры системы дальнего транспорта.

Нефтепромысловый газ, содержащий сероводород, под­лежит очистке от него в пределах установленных норм. Для исполь­зования газа в бытовых топках содержание сероводорода в нем не должно превышать 0,02 г/м 3 при нормальных условиях.

Для очистки газа от сероводорода обычно применяют два технологических процесса: а) адсорбцию твердым веществом; б) абсорб­цию жидкостью. В адсорбционных процессах удаление сероводорода из газа происходит в результате концентрации его на поверхности твердого материала. Обычно промышленными адсорбентами служат зернистые материалы, обладающие в результате специальной обра­ботки большой удельной поверхностью, отнесенной к единице веса. В абсорбционных процессах происходит массообмен, т. е. переход сероводорода из газообразной в жидкую фазу. Массообмен осу­ществляется через поверхность раздела обеих фаз. Абсорбированный сероводород физически растворяется в жидкости. Удаление его из жидкости, т. е. десорбция (или отпарка), представляет собой обращенный процесс, когда поглощенный сероводород выделяется из жидкой фазы. Адсорбционные процессы извлечения сероводорода относят к сухим процессам, а абсорбционные в противоположность им – к мокрым или жидкостным. Адсорбентами в сухих процессах служат окись железа и активи­рованный уголь. При очистке газа от сероводорода активированным углем сера, отлагающаяся на нем, извлекается экстрагирова­нием, соответствующим растворителем – сернистым аммонием, а уголь снова используется в процессе до наличия в нем чрезмерно высокого содержания мелких фракций, появляющихся в резуль­тате истирания.

Существенным преимуществом процесса очистки газа активи­рованным углем является возможность получения весьма чистой элементарной серы сравнительно простым методом. Важнейшим его недостатком является сравнительно быстрое дезактивирование угля вследствие загрязнения его механическими примесями и нефтью. Поэтому перед поступле­нием в адсорбер газ необходимо полностью очистить от этих ком­понентов. Этот процесс не нашел широкого промышленного приме­нения.

Читайте также:  Технология приготовления бисквита горячим способом

Наиболее распространен метод извлечения сероводорода из газа гидратом окиси железа (Fe2O3H2O). Гидрат окиси железа в очистной массе должен находиться в актив­ных альфа- или гамма-модифика­циях. Первая содержится в болот­ной руде, а вторая входит в состав так называемого красного шлама – отхода производства глинозема из бокситов.

Извлечение сероводорода из газа гидратом окиси железа осу­ществляют при сравнительно вы­соком содержании H2S в газе, доходящем до 23 г/м 3 при нор­мальных условиях. В резуль­тате извлечения содержание серо­водорода в газе снижается при­мерно до 0,02 г/см 3 .

Количество очистной массы (м 3 /1000 м 3 /ч при нормальных усло­виях) определяют по формуле

,

где s – содержание сероводорода в газе в, % об.; f – содер­жание активной Fе2О3 в свежей массе, %; q – плотность свежей рабочей массы, мг/м 3 .

Почти на всех работающих установках очистка газа гидратом окиси железа производится при давлении газа, близком к атмосфер­ному. Однако в случае необходимости процесс можно вести и при любом избыточном давлении.

В промышленности адсорбционные процессы используются для окончательной очистки газов от сероводорода после предварительной очистки более дешевыми абсорбционными процессами. Очистка газа абсорбционными процессами может быть осуществлена разно­образными способами. Однако наиболее эффективными из них являются этаноламиновые процессы. Они в значительной степени вытеснили такие процессы очистки газа, как очистка окисью железа. Эффективность их заключается в низкой стоимости, высокой реак­ционной способности, стабильности, а также легкости регенерации загрязненных растворов. Однако при эксплуатации этаноламиновых установок может встретиться ряд трудностей, в результате чего осложняется процесс и увеличиваются эксплуатационные расходы и капиталовложения. Основными факторами, удорожающими про­цесс, являются коррозия аппаратуры и потеря амина. Сами аминовые растворы не действуют на сталь, но выделяющаяся в десорбенте смесь сероводорода и паров воды разрушает обычные стали.

К эксплуатационным трудностям, ограничивающим иногда производительность установок очистки, относятся вспенивание и за­бивка аппаратуры. Предупреждение вспенивания во многих случаях может быть достигнуто добавлением к раствору противопенных добавок (чистые силиконы или высококипящие спирты; олеиновый спирт или октилфенокси-этанол) или извлечением из него пенообразующих веществ, например тонкодисперсных осадков.

Известно применение трех аминов: моноэтаноламин NH2CH2CH2OH3, диэтаноламин NH(CH2CH2OH)2 и триэтаноламин N(CH2CH2OH)3. Наибольший интерес для промышленного при­менения представляют моноэтаноламин и диэтаноламин. Триэтаноламин был вытеснен преимущественно из-за низкой поглоти­тельной способности, низкой реакционной способности и неудовле­творительной стабильности.

Наибольшей поглотительной способностью по отношению к H2S обладает раствор моноэтаноламина. Но моноэтаноламину присущи два важных недостатка: относительно высокое давление паров и способность в условиях работы установок очистки газа вступать в необратимую реакцию с сероокисью углерода. Первый их этих недостатков устраняется простой водной промывкой для поглощения паров амина, а второй – в большинстве случаев не относится к нефтепромысловым газам.

Основные реакции, протекающие при абсорбции H2S и СО2 раствором моноэтаноламином, можно представить уравнениями

,

,

,

,

.

Как следует из уравнений, процесс не сводится к чисто физиче­ской абсорбции, а ведет к образованию химических соединений.

Концентрация раствора моноэтаноламина может изменяться в широких пределах. Обычно ее выбирают на основании опыта работы и по соображениям противодействия коррозии, не руководствуясь стремлением снизить первоначальную стоимость раствора до мини­мума. Обычно концентрация раствора лежит в пределах 15 – 20%, но иногда применяют растворы более разбавленные – до 10% и более концентрированные – до 30%. Концентрация аминов ослаб­ляет коррозию стальной аппаратуры.

Принципиальная технологическая схема установки по очистке газов от сероводорода растворами этаноламинов представлена на рис.3.53

Поглощение из газов H2S и СО2 этаноламинами производится в абсорбере 2 тарельчатого или насадочного типа, для чего газ пода­ется через приемные сепараторы в нижнюю его часть. Поднимаясь вверх, газ вступает в контакт с водным раствором этаноламина, ко­торый поступает на верх абсорбера и стекает сверху вниз.

Для улавливания паров этаноламинов на верхние 2 – 3 тарелки подают холодный конденсат. Очищенный газ из абсорбера проходит скруббер 3, который может быть установлен отдельно или встроен в верхнюю часть абсорбера.

Насыщенный раствор из абсорбера, пройдя теплообменную аппа­ратуру, направляется в десорбер (отгонную колонну) 6 тарельчатого или насадочного типа.

Если очищенный газ находится в абсорбере под давлением, до­статочным для пропуска раствора через теплообменную аппаратуру в отгонную колонну (как показано на схеме), то раствор, пройдя регулятор уровня, поступает сначала в теплообменник 5, в котором на­гревается за счет тепла регенерированного раствора, а затем направ­ляется в отгонную колонну 6. Если давление в абсорбере недостаточ­ное, то для подачи насыщенного раствора в отгонную колонну уста­навливается насос. В отгонной колонне проибходит выделение из насыщенного раствора поглощенных в абсорбере кислых газов под действием поднимающегося вторичного водяного пара, образующегося в нижней части отгонной колонны при кипячении раствора в кипя­тильнике 9.

Рис. 3.53. Принципиальная технологическая схема очистки газа от сероводорода этаноламиновым способом: 1 – приемный сепаратор; 2 – абсорбер; 3 — скруббер; 4, 11 – промежуточные емкости; 5 – теплообменники; 6 – десорбер; 7– конденсатор-холодильник; 8 – емкость флегмы; 9 – подогреватель; 10 – насосы; 12 – холодильник; I – сырой газ; II – очищенный газ; III – насыщенный раствор; IV – регенерированный раствор; V – кислые газы; VI – флегма

Насыщенный раствор отводится в кипятильник с последней та­релки, а кипящая смесь возвращается из кипятильника под тарелку. Пар при этом проходит через тарелку, поднимаясь по колонне, а раствор частично может вновь поступать в кипятильник вместе с рас­твором, стекающим с тарелки, чем достигается многократная цирку­ляция раствора через кипятильник.

Регенерированный раствор из десорбера поступает в теплообмен­ник 5, где охлаждается, отдавая тепло насыщенному раствору, после чего поступает в промежуточную емкость 11, откуда насосом 10 через холодильник 12 подается вновь в абсорбер.

На линии регенерированного раствора перед входом в абсорбер устанавливается регулятор расхода, особенно необходимый при воз­можных изменениях давления газа.

Выходящая из десорбера парогазовая смесь проходит конденса­тор-холодильник 7, где охлаждается водой для конденсации пара.

Образовавшийся конденсат (флегма) отделяется от кислых газов в промежуточной емкости 8, откуда кислые газы направляются для последующего использования (или для сжигания), флегма насосом 10 возвращается на верх отгонной колонны, а избытки ее сбрасываются в канализацию.

Иногда кондбнсаторы устанавливаются над отгонными колон­нами. Давление в колонне поддерживается регулятором давления на линии кислых газов. Если в газе содержатся механические примеси, а сепаратор 1, установленный перед абсорбером, недостачно эффективен, то для раствора необходима установка фильтра, действу­ющего непрерывно или периодически. Установка такого фильтра наиболее целесообразна на линии насыщенного раствора.

При повышенных температурах регенерации наблюдается корро­зия в нижней части десорбера, и в регенерированный раствор посту­пают продукты коррозии; в этом случае целесообразно пропускать регенерированный раствор через какую-нибудь емкость, в которой эти примеси могут осесть.

Если в очищенном газе содержится кислород, необходимо осво­бождать раствор от накапливающихся этаноламинов.

Иногда схемой установки предусматривается специальный пере­гонный куб с паровой рубашкой, в который предварительно зали­вается крепкий раствор щелочи и постепенно по расходомеру подается регенерированный раствор этаноламина из отгонной колонны.

При кипячении раствора в кубе в результате реакции со щелочью связанный этаноламин освобождается и вместе с несвязанным этанол-амином перегоняется под вакуумом, образуемым паровым эжектором.

Водяные пары и пары этаноламина поступают в поверхностный водяной конденсатор, где конденсируются и возвращаются в цикл.

При необходимости одновременной очистки газов от H2S и СО2 применяется двухступенчатая схема очистки. Эта схема основана на применении двухступенчатой абсорбции H2S и СО2 крепким 25 – 35%-ным раствором моноэтаноламина в первой ступени и слабым 5 – 12%-ным раствором во второй ступени, причем каждый раствор имеет самостоятельный цикл абсорбции и регенерации, а тепло газов регенерации второй ступени используется для регенерации первой ступени.

Двухступенчатая схема является более экономичной по сравне­нию с одноступенчатой вследствие достижения тонкой очистки при минимальных расходах пара и моноэтаноламина за счет: а) примене­ния концентрированных растворов первой ступени, имеющих боль­шую поглотительную способность, благодаря чему достигается мини­мальная циркуляция раствора; б) двухкратного использования тепла водяного пара; в) применения слабых растворов во второй ступени, обеспечивающих более полную регенерацию раствора, а, следова­тельно, и более тонкую очистку газов от H2S и СО2, а также улавлива­ния паров моноэтаноламина, уносимых газами из крепкого раствора первой ступени.

При производстве технологических расчетов необходимо руко­водствоваться следующими основными положениями.

Количество раствора, необходимое для связывания H2S и СО2, определяется по данным поглотительной способности растворов эта­ноламинов в зависимости от парциального давления сероводорода в газе.

Равновесная поглотительная способность водных растворов эта­ноламинов значительно возрастает при увеличении парциального давления сероводорода в газе, поэтому процесс абсорбции выгоднее проводить при более высоких давлениях.

Процесс абсорбции также улучшается при понижении темпера­туры газа и раствора, поступающих в абсорбер.

Читайте также:  Стимулирующая функция это способ

Наибольшую поглотительную способность по отношению к H2S и СО2 имеют моноэтаноламины (МЭА), наименьшую – триэтанол-амины. Но, с другой стороны, моноэтаноламины более летучи, они легко проникают через неплотности аппаратуры, в большем коли­честве уходят с газом. Поэтому на практике моноэтаноламины вынуждены применять с пониженной концентрацией (15 – 20 %).

Можно принять следующее примерное объемное отношение (м 3 /м 3 ) поглотительной способности различных этаноламинов по серово­дороду.

Одновременное поглощение H2S и СО2 сопровождается повыше­нием их упругости над растворами этаноламинов.

Присутствие углекислоты в растворе этаноламина понижает рас­творимость сероводорода и, наоборот, присутствие H2S понижает растворимость СО2.

Так, для газа с 1%-ным H2S, не содержащего углекислоты, ко­эффициент сорбции по сероводороду примерно в три раза выше, чем для того же газа, содержащего 20% CO2.

Скорость поглощения H2S в большей степени превышает скорость поглощения углекислоты для раствора триэтаноламина, чем для раствора диэтаноламина. Это указывает на возможность селектив­ной очистки газа, содержащего H2S и СО2, с применением раствора триэтаноламина: в этом случае при очистке газа с высоким отно­шением H2S:СО2 можно получить газ регенерации с достаточной кон­центрацией сероводорода, годный для использования.

НЕФТЯНЫЕ ЭМУЛЬСИИ. СПОСОБЫ ОБЕЗВОЖИВАНИЯ И ОБЕССОЛИВАНИЯ НЕФТИ

4.1 Образование нефтяных эмульсий

В процессе добычи, при совместном движении нефти и воды по стволу скважины и нефтесборным трубопроводам про­исходит их взаимное перемешивание. В результате диспергирования одной жидкости в другой образуются эмульсии.

Эмульсии представляют собой дисперсные системы двух взаимно нераство­римых (или очень мало растворимых) жидкостей, одна из которых диспергирована в другой в виде мелких капель (глобул). Дис­пергированную жидкость называют внутренней, или дис­персной фазой, а жидкость, в которой она находится, – дисперсионной, или внешней средой.

При смешении нефти с водой возможно образование эмульсии двух типов: прямого — нефть в воде (Н/В), и обратного — вода в нефти (В/Н). Почти все эмульсии, встречающиеся при добыче нефти, принадлежат к типу В/Н. Содержание пластовой воды в таких эмульсиях колеблется в широких пределах: от де­сятых долей процента до 90% и более. Эмульсии типа Н/В (в воде диспергированы глобулы нефти), встре­чающиеся в нефтепромысловой практике значительно реже, обычно содержат менее 1% нефти (в среднем 1000 мг/л). Эмульсии этих типов обладают совершенно разными свойствами и, соответственно, требуют различных методов разрушения.

Для образования стойких эмульсий необходимо наличие особых веществ – природных эмульгаторов, в том или ином количестве всегда содержащихся в пластовой нефти. К ним относятся асфальтены, смолы, нефтерастворимые органические кислоты, механические примеси и др. В процессе перемешивания нефти с водой и образо­вания глобул воды частицы эмульгирующего вещества на поверхности этих глобул (на поверхности раздела фаз) образуют оболочку, препятствующую слиянию капелек. На рис. 4.1 схематически изображена такая оболочка на поверхности глобулы воды. С явлением образования оболочки на поверхности гло­булы воды связывают процесс «старения» эмульсии. Под процессом старения понима­ют упрочнение пленки эмуль­гатора с течением времени. Процесс старения эмульсии может длиться от нескольких часов до 3 – 4 дней. Первоначально этот процесс идет очень интенсивно, но по мере насыщения поверх­ностного слоя глобул эмульгаторами замедляется или даже пре­кращается, а оболочки вокруг глобул воды стано­вятся очень прочными и трудно поддаются разруше­нию.

Рис. 4.1. Схематичное изображение пленки на поверхности глобул воды: 1 – толщина оболочки; 2, 3 – эмульгирующие вещества; 4 – глобула воды; 5 – нефть

К основным характеристикам нефтяных эмульсий относятся: агрегативная устойчивость (стойкость), вязкость, размер эмульгированных глобул водной фазы. В совокупности эти параметры отражают интенсивность эмульгирования нефти, ее физико-химические свойства и адсорбцию эмульгатора.

Устойчивость эмульсий – это способность в течение определенного времени не разрушаться и не разделяться на две несмешивающиеся фазы. Агрегативная устойчивость водонефтяных эмульсий по Ребиндеру определяется временем их существования и рассчитывается как отношение высоты столба эмульсии (Н, см), к средней линейной скорости самопроизвольного расслоения системы (v, см/с).

Интенсивность разрушения эмульсии может быть охарактеризована разностью между плотностями воды и нефти Dr, а также отношением суммарного содержания асфальтенов (а) и смол (с) к содержанию парафинов (п) в нефти (а+с)/п.

Последний показатель не только характеризует углеводородный состав нефтей, но и предопределяет способ деэмульгирования нефтяных эмульсий. Показатель Dr, как физическая характеристика их разделения, характеризует движущую силу гравитационного отстаивания. Оба показателя служат качественными характеристиками извлекаемых эмульсий и позволяют разделять их на группы.

По разности в плотностях воды и нефти процесс разделения эмульсий может классифицироваться на труднорасслаиваемый (Dr = 0,200-0,250 г/см 3 ), расслаиваемый (Dr = 0,250-0,300 г/см 3 ) и легко расслаиваемый (Dr = 0,300-0,350 г/см 3 ). По отношению суммарного содержания асфальтенов и смол к содержанию парафина нефти разделяются на смешанные ((а+с)/п = 0,951-1,400), смолистые ((а+с)/п = 2,759-3,888) и высокосмолистые ((а+с)/п = 4,774-7,789).

Вязкость эмульсии определяют различными методами, принятыми для вязких жидкостей. Динамическая вязкость η измеряется в физической системе единиц в пуазах или Па . с. Кинематическая вязкость ν определяется отношением динамической вязкости эмульсии к ее плотности при той же температуре и измеряется в стоксах или м 2 /с . Исследованиями различных ученых выявлен ряд зависимостей величины вязкости эмульсии от содержания воды. Так Монсон установил для наиболее распространенных эмульсий типа В/Н следующую зависимость: наибольшая вязкость эмульсии для сырой нефти любых сортов приблизительно равна вязкости сырой нефти, умноженной на коэффициент 1,3; 1,8; 2,7; 4,1 для эмульсий, содержащих соответственно 10, 20, 30, 40 % воды.

В зависимости от размера глобул воды и степени ста­рения нефтяные эмульсии разделяются на легкорас­слаивающиеся, средней стой­кости и стойкие. На рис. 4.2 показан вид таких эмульсий под микро­скопом. В легкорасслаивающихся эмульсиях обычно большинство глобул круп­ные – размером от 50 до 100 мкм (рис. 4.2, а), в то время как стойкие эмульсии содержат в основном мелкие глобулы размерами от 0,1 до 20 мкм (рис. 4.2, в). Эмульсии средней стойкости занимают промежуточ­ное положение (рис. 4.2, б).

а б в

Рис.4.2. Вид водонефтяных эмульсий под микроскопом: а – лекорасслаивающаяся эмульсия; б – эмульсия средней стойкости; в – стойкая эмульсия

На стойкость водонефтяных эмульсий оказывает большое влияние интенсивность перемешивания нефти с водой, которая при различных способах добычи отличается.

При фонтанном способе до­бычи нефти в результате постепенного выделения газа в подъемных трубах и соответственного увеличения скорости потока могут образоваться весьма стойкие эмульсии. Дополнительное переме­шивание нефти происходит при резких поворотах потока в фон­танной арматуре и при прохождении через штуцеры. Степень диспергирования капель воды при прохождении через штуцер тем больше, чем больше перепад давления в штуцере.

При газлифтном способе добычи нефти условия для образова­ния эмульсий примерно те же, что и при фонтанной добыче. Обра­зование эмульсий при газлифтном способе происходит в основном в месте ввода рабочего агента в насосно-компрессорные трубы. Эмульсии, образующиеся при газлифтном способе добычи нефти, также отличаются стойкостью.

При глубинно-насосной эксплуатации скважин эмульгирование нефти происходит в узлах клапана, в паре плунжер-ци­линдр и в подъемных трубах при возвратно-поступательном дви­жении насосных штанг.

При использовании погружных электроцентробежных насосов перемешивание продукции скважины происходит в рабочих ко­лесах насоса, а также при турбулентном движении смеси в подъ­емных трубах.

Стойкость эмульсии при добыче нефти глубинными штанговыми насосами (ШГН) значительно ниже, чем при эксплуатации погружными электроцентробежными насосами (ЭЦН), но она может повышаться в обоих случаях при малом к. п. д. оборудования.

Особенно сильное влияние на стойкость эмульсии при насосной эксплуатации оказывают неисправности оборудования –утечки в насосах, негерметичность соединений. В случае пропуска добываемой продукции в клапанных узлах за счет давления столба жидкости над клапаном истечение жидкости происходит с большой скоростью, что вызывает турбулизацию и эмульгирование нефти. Сильное эмульгирование происходит при увеличенном зазоре между плунжером и цилиндром глубинного насоса.

Немалую роль в повышении стойкости эмульсий играет также и наземное оборудование – это система нефтесборных труб, рас­пределительные коллекторы групповых замерных установок, шту­церы, задвижки, клапаны, уголки, тройники и сепараторы.

4.2 Необходимость обезвоживания нефти

на нефтяных месторождениях

Образование стойких эмульсий снижает межремонтный период (МРП) работы скважин из-за обрывов штанг в штанговых скважинных насосных установках (ШСНУ), пробоев электрической части установок электропогружного центробежного насоса (УЭЦН) вследствие перегрузок погружного электродвигателя (ПЭД). Рост давления жидкости в системах сбора нефти и газа влечет за собой порывы коллекторов. Затрудняются сепарация газа и предварительный сброс воды на УПС. Однако наибольший рост энерго- и металлоемкости связан с необходимостью разрушения стойких эмульсий и имеет место в системах подготовки нефти.

Как было сказано выше, вода образует с нефтью эмульсии различной степени стойкости, и со временем стойкость эмульсий повышается. Это является одной из причин того, что добываемую нефть необходимо обезвоживать как можно раньше с момента образования эмульсии, не допуская ее старения. Наи­более целесообразно проводить обезвоживание нефти на место­рождениях

Читайте также:  Способы устранения погрешности сельсинов

Второй, наиболее важной причиной обезвоживания нефти в районах ее добычи является высокая стоимость транспорта пластовой воды. Транспорт обводненной нефти удоро­жается не только в результате перекачки дополнительных объемов содержащейся в нефти пластовой воды, но и вследствие того, что вязкость эмульсии типа В/Н выше, чем чистой нефти. Так, вязкость безводной нефти Ромашкинского месторождения при 15 0 С в три раза ниже, чем ее эмульсии, содержащей 20% воды. Вязкость эмульсии на данном месторождении, содержащей 5 и 20% воды, составляет соответственно 17 и 33,3 сСт, т. е. возрастает в 2 раза. При увеличении содержания воды в нефти на 1 % транспортные расходы возрастают в среднем на 3 – 5% при каждой перекачке.

Вместе с водой при обезвоживании из нефти удаляются соли, растворенные в воде, и механические примеси, которые являются причиной коррозии и загрязнения трубопроводов и аппаратов.

Обезвоживание нефти на месторождениях – лишь первый этап ее подготовки к переработке, так как присутствие в нефти воды, солей и механических примесей в тех количествах, которые остаются в нефти после обезвоживания на месторождении, отри­цательно сказывается на процессах переработки нефти и на ка­честве получаемых нефтепродуктов. Так, например, для большин­ства нефтей Урало-Поволжского региона содержание хлористых солей при количестве остаточной пластовой воды в нефти 0,5% составляет 1000 – 1200 мг/л, а в нефти, поступающей на переработку, содер­жание солей не должно превышать 5 – 10 мг/л.

Более глубокая очистка нефти от пластовой воды, солей и меха­нических примесей осуществляется в процессе обессоливания. С этой целью обезвоженную нефть интенсивно перемешивают с пресной водой, а образовавшуюся эмульсию разрушают.

4.3 Методы предотвращения и борьбы с образованием эмульсий

4.3.1 Предотвращение образования стойких эмульсий

Для предотвращения эмульгирования нефти необходимо в ка­кой-то степени устранить или, по крайней мере, ослабить влияние перечисленных условий, при которых происходит образование нефтяных эмульсий в процессе добычи. Главные из них:

1) совместное поступление нефти и воды из скважины;

2) интенсивное перемешивание, приводящее к диспергированию одной жидкости в другой;

3) присутствие в нефти природных эмульгаторов.

Для раздельного извлечения нефти и воды из скважин послед­ние оборудуют двумя колоннами НКТ: одной для нефти, другой для воды. Фильтр подъемника для воды должен быть опущен в зумпф (зумпф – нижняя часть эксплуатационной колонны) скважины, а для добычи нефти может быть использовано кольцевое пространство между эксплуатацион­ной колонной и колонной НКТ для добычи воды или же самостоятельная отдельная колонна НКТ, прием которой находится ниже кровли пласта.

В зависимости от величины пластового давления скважина может быть оборудована для извлечения как нефти, так и воды фон­танным способом или нефти фонтанным, а воды механизированным способом. В случае малых забойных давлений, когда естественное фонтанирование невозможно, оба подъемника оборудуют для извлечения нефти и воды механизированным способом. Оборудование скважин для раздельного извлечения нефти и воды показано на рис.4.3.

Рис.4.3. Оборудование скважин для раздельной добычи нефти и воды: а – скважина с одной колонной НКТ; б – скважина с двумя колоннами НКТ

При раздельном отборе неф­ти и воды из скважины очень трудно поддерживать уровень раздела нефти и воды на забое скважины в пределах вскры­той части пласта, разделение продукции скважины часто на­рушается: в подъемник для отбора нефти поступает вода или наоборот. По этой причине раз­дельный отбор нефти и воды не получил широкого распро­странения.

Чтобы ограничить поступ­ление воды, применяются различные способы изоляции, закупо­ривающие водопроницаемую зону (устанавливают це­ментные мосты, задавливают в пласт це­ментный раствор или реагенты, образующие при взаимодействии с пластовой водой гели и т. д). Однако все эти меро­приятия недостаточно эффективны.

В связи с тем, что работы по предотвращению поступления воды на забой скважины очень трудны и при этом невозможно пол­ностью предотвратить поступление воды в дальнейшем, наибольшее внимание на месторождениях должно быть уделено уменьшению перемешивания нефти и воды с целью снижения стойкости неф­тяной эмульсии.

Так как в фонтанных скважинах наибольшее перемешивание нефти и воды происходит в подъемных трубах и при прохождении нефтегазовой смеси через штуцеры, в некоторых случаях для сни­жения эмульгирования нефти штуцер устанавливают на забое скважины. При этом степень перемешивания нефти и воды в подъемных трубах уменьшается. Происходит это по следующим причи­нам: в забойных штуцерах из-за малого количества выделившегося газа (а если давление насыщения нефти меньше, чем давление в ство­ле скважины около забойного штуцера, то газ в продукции, прохо­дящей через штуцер, будет вообще отсутствовать) перепады давле­ний в штуцере значительно меньше, чем при установке его на по­верхности. Это обстоятельство, а также довольно большая про­тяженность прямого участка подъемных труб после забойного штуцера способствуют уменьшению перемешивания потока, что предотвращает образование стойких эмульсий. Однако сложность спуска, замены и регулирования забойных штуцеров ограничивает возможность их широкого применения.

При штуцерах, устанавливаемых на поверхности, степень пе­ремешивания может быть уменьшена, если в сепараторах, рас­положенных после штуцера, поддерживать повышенные давле­ния. Этим достигается снижение перепада давления в штуцере и соответственно снижается степень перемешивания потока.

При выборе того или иного вида газлифтной добычи необхо­димо учитывать, что в скважинах, эксплуатируемых периоди­ческим газлифтом, перемешивание происходит в меньшей степени при подъеме столба жидкости в насосно-компрессорных трубах. Однако в результате изменения направления потока на устье скважины, при движении по выкидным линиям и при прохожде­нии через сепараторы смесь нефти и воды сильно перемешивается и эмульгируется. В отличии от периодического, при непрерывном газлифте наибольшее перемешивание происходит в насосно-ком­прессорных трубах и меньшее – в поверхностном оборудовании.

При эксплуатации скважин глубинными штанговыми насо­сами с целью предотвращения образования стойких эмульсий особое внимание должно быть уделено повышению к.п.д. глубиннонасосной установки. Чем выше ее к.п.д., тем меньше со­здается условий для перемешивания жидкости при подъеме. К.п.д. глубиннонасосной установки можно повысить соответ­ствующим подбором числа качаний и длины хода полированного штока, применением клапанных узлов большего диаметра, уст­ранением пропуска в этих узлах и особенно хорошей подгонкой плунжера к цилиндру насоса.

Для увеличения коэффициента заполнения насоса и ликвида­ции вредного влияния газа желательно предотвратить по воз­можности поступление газа в насос. С этой целью обычно на при­еме насоса устанавливают приспособление (газовый якорь), ко­торый обеспечивает более полное заполнение насоса и устраняет образование в нем газовых «мешков».

Для уменьшения эмульгирования нефти в поверхностном оборудовании выкидные линии от скважин должны проклады­ваться по возможности без резких поворотов и иметь достаточный диаметр для сведения к минимуму турбулизации потока. В выкидных линиях и нефтесборных коллекторах должно устанавливаться минимальное число задвижек и клапа­нов, чтобы устранить перемешивание жидкости в результате изме­нения проходного сечения труб в этих местных сопротивлениях. Выкидные линии от скважин должны прокладываться с таким уклоном, чтобы не происходило скопления воды в пониженных ме­стах трубопроводов, так как это может создать благоприятные условия для эмульгирования нефти.

При выборе насосов для перекачки обводненной нефти пред­почтение должно быть отдано поршневым или винтовым насосам, которые, по сравнению с центробежными, имеют повышенные к.п.д. и меньше перемешивают перекачиваемую жидкость. Насосы должны поддерживаться в исправном состоянии, утечки в ра­бочих органах должны быть сведены к минимуму.

Экспериментально установлено, что в самотечных системах сбора нефти происходит меньшее эмульгирование продукции скважин по сравнению с напорными. Поэтому при проектиро­вании нефтесборных коллекторов должно быть обращено вни­мание на рельеф местности с максимальным использованием само­тека в нефтесборных коллекторах.

Все перечисленные выше способы для уменьшения поступле­ния воды вместе с нефтью и снижения степени перемешивания не могут полностью исключить образования нефтяных эмульсий. Поэтому наряду с мероприятиями по снижению образования эмульсий, большое внимание приходится уделять разрушению образовавшихся эмульсий с последующим отделением нефтяной фазы от воды.

4.3.2 Разрушение эмульсий

Способы разрушения нефтяных эмульсий условно можно разделить на следующие группы:

— гравитационное холодное разделение (отстаивание);

— разделение в поле центробежных сил (центрифугирование);

— воздействие магнитного поля.

Гравитационное холодное разделение (отстаивание) осуществляется за счет гравитационного осаждения диспергированных капель воды и применяется при высоком содержании воды в пластовой жидкости. На промыслах применяют отстойники разнообразных конструкций, периодического и непрерывного действия. В качестве отстойников периодического действия обычно используются сырьевые резервуары, при заполнении которых сырой нефтью происходит осаждение воды в их нижнюю часть. В отстойниках непрерывного действия отделение воды происходит при непрерывном прохождении обрабатываемой смеси через отстойник. В зависимости от конструкции и расположения распределительных устройств, движение жидкости в отстойниках осуществляется в некотором преобладающем направлении – горизонтально или вертикально.

Источник

Оцените статью
Разные способы