- Способы парообразования.
- Испарение
- Испарение: что это за процесс
- Испарение на уровне молекул
- Интенсивность испарения
- Насыщенный пар
- Испарение в жизни
- Испарение в организме человека и животных
- Испарение у растений
- Испарение в природе и окружающей среде
- Испарение в промышленности и быту
- Парообразование и конденсация
- Процесс образования пара — парообразование
- Что происходит во время испарения
- Почему при быстром испарении температура жидкости ощутимо понижается
- Могут ли испаряться твердые тела
- От чего зависит скорость испарения
- Как влияет на испарение род вещества
- Как влияет на испарение движение воздуха над поверхностью
- Как влияет на испарение площадь поверхности жидкости
- Как влияет на испарение температура
- Какой пар называют насыщенным
- Сравним испарение в открытом и закрытом сосудах
- Что такое динамическое равновесие пара и жидкости
- Где применяется испарение
- Что такое конденсация
- Что происходит во время конденсации
Способы парообразования.
Испарение. Это процесс, при котором со свободной поверхности жидкости или твердого тела вылетают молекулы, у которых кинетическая энергия максимальна. Испарение сопровождается охлаждением жидкости, т. к. вылетают самые быстрые молекулы. Испарение происходит при любой температуре. | Кипение. Это процесс парообразования, происходящий как со свободной поверхности, так и по всему объему жидкости при помощи образующихся в ней пузырьков пара. Кипение происходит в случае, если давление насыщенного пара внутри пузырька пара равно или больше внешнего давления. Кипение происходит только при определённой для данного вещества температуре. Температура кипения зависит от внешнего давления. |
Динамическое равновесие – состояние, в котором может находиться пар (жидкость) при превращении в жидкость (пар); при этом число частиц, вылетающих с поверхности жидкости в единицу времени, равно числу частиц, возвращающихся в жидкость.
Насыщенный пар – пар, находящийся в состоянии динамического Насыщенный
равновесия со своей жидкостью (существует только в закрытом пар
сосуде). Концентрация молекул и давление насыщенного пара
не зависят от его объема при постоянной температуре. С повышением температуры будут увеличиваться Идеальный концентрация молекул и давление насыщенного пара (см. рис.). газ
Ненасыщенный пар – пар, плотность и давление которого меньше
плотности и давления насыщенного пара при данной температуре; пар, не находящийся в динамическом равновесии со своей жидкостью.
Точка росы – температура, при которой водяной пар, содержащийся в воздухе, становится насыщенным в результате охлаждения.
Парциальное давление водяного пара – давление, которое производил бы водяной пар, если бы все остальные газы в воздухе отсутствовали.
Влажность воздуха – характеризует содержание водяного пара в воздухе.
Абсолютная влажность воздуха – масса водяного пара в 1 м 3 воздуха при данной температуре (плотность).
Относительная влажность равна отношению парциального давления пара (или плотности) к давлению (или плотности) насыщенного пара при данной температуре.
Относительная влажность показывает насколько далёк пар от насыщения.
Источник
Испарение
О чем эта статья:
Испарение: что это за процесс
Процесс перехода из жидкого состояния в газообразное называется парообразованием. У этого процесса есть две разновидности: испарение и кипение.
Например, мы заварили себе горячий чай. Над чашкой мы точно увидим пар, так как вода только что поучаствовала в процессе кипения.
Подождите-ка, мы ведь только что сказали, что кипение и испарение — разные вещи. Это действительно так, при этом эти два процесса могут происходить параллельно.
- Испарение — это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости. Если поверхность жидкости открыта и с нее начинается переход вещества из жидкого состояния в газообразное, это будет называться испарением.
- Кипение — процесс интенсивного парообразования, который происходит в жидкости при определенной температуре.
Испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в озере испаряется, хотя мы этого и не замечаем. Кипение по сути своей — это интенсивное испарение, которое вызвали внешними условиями — доведя вещество до температуры кипения.
Физика объясняет испарение тем, что жидкость обычно несколько холоднее окружающего воздуха — из-за разницы температур происходит испарение. Как будто бы это фазовый переход, о котором мы говорим в статье об агрегатных состояниях .
Если нет каких-то внешних воздействий, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость из-за явления диффузии.
Интересно то, что направление тепловых потоков при испарении может идти в разной последовательности и комбинациях:
- из глубины жидкости к поверхности, а затем в воздух;
- только из жидкости к поверхности;
- к поверхности из воды и газовой среды одновременно;
- к площади поверхности только от воздуха.
Подытожим, чтобы не запутаться: в чем главная разница между испарением и кипением:
Испарение | Кипение |
При любой температуре, с поверхности жидкости | При определенной температуре, во всем объеме жидкости |
Испарение на уровне молекул
Давайте вспомним об особенностях разных агрегатных состояний вещества.
Агрегатные состояния
Свойства
Расположение молекул
Расстояние между молекулами
Движение молекулы
сохраняет форму и объем
в кристаллической решетке
соотносится с размером молекул
колеблется около своего положения в кристаллической решетке
близко друг к другу
малоподвижны, при нагревании скорость движения молекул увеличивается
занимают предоставленный объем
больше размеров молекул
хаотичное и непрерывное
Из этой таблицы видно, что молекулы в жидкостях находятся близко друг другу, но хаотично, то есть не имеют кристаллической решетки, как в твердых телах. Эти молекулы движутся (причем, чем выше температура, тем быстрее движутся) и в ходе движения сталкиваются. Столкновения меняют направление и скорость движения — из-за этого молекулы иногда быстро устремляются к поверхности жидкости и вылетают из нее. Это и есть испарение.
В предыдущем абзаце мы не случайно заметили, что молекулы движутся быстрее при увеличении температуры — ведь из-за этого испарение идет интенсивнее. В этом случае происходит охлаждение: нагретую жидкость уже покинули все самые быстрые молекулы и температура самой жидкости понижается.
Интенсивность испарения
Интенсивностью испарения называют количество воды, которое испаряется с поверхности площадью 1 см2 за одну секунду.
Интенсивность испарения зависит от следующих факторов:
- Температура поверхности. Чем выше температура, тем больше испарение. После дождя в Санкт-Петербурге улицы долгое время остаются влажными, а вот в Таиланде даже в сезон дождей все высыхает быстро — из-за высокой температуры. Но это только если в сезон дождей дождь умудрился прекратиться 🙂
- Ветер. Чем больше скорость ветра, тем больше испарение. Фен для волос работает на этом принципе — по сути, он создает портативный ветер, который помогает высушить ваши волосы.
- Дефицит влажности. Интенсивность испарения будет выше там, где больше дефицит влажности. Вряд ли многие из нас были Сахаре, но что это такое представляют все. В любой пустыне колоссально низкая влажность — из-за этого испарение идет интенсивнее.
- Давление. Чем больше давление, тем меньше испарение. Мы уже выяснили, что не смотря на разницу между кипением и испарением, эти два процесса между собой связаны. Таким образом, температура кипения воды на вершине Эвереста равна 69 градусам Цельсия. В то время, как в нашей повседневной жизни она равна 100. Это возвращает нас к первому фактору — температуре.
Скорость испарения — количество жидкости, которая испаряется со свободной поверхности в единицу времени.
Интенсивность испарения — количество жидкости, которая испаряется с единицы площади поверхности в единицу времени.
По сути, это два очень близких друг к другу понятия, поэтому разница будет лишь в величинах и единицах измерения, а суть процесса отражают обе формулировки.
Насыщенный пар
Процесс испарения напрямую связан с круговоротом воды в природе. Вода, испаряясь, превращается в водяной пар и поднимается вверх, где происходит конденсация пара, образуются облака, и вода возвращается на землю в виде осадков.
Вследствие конденсации водяного пара, который живет в воздухе, образуются облака и туман. По этой же причине холодное стекло запотевает, соприкасаясь с теплым воздухом.
На рисунке — процессы испарения и конденсации в плотно закрытом сосуде, когда жидкость и пар находятся в динамическом равновесии. Это значит, что одновременно конденсируется и испаряется одинаковое количество вещества.
Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Но бесконечное количество пара в воздух не запихнешь. Поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация — это когда образуется роса.
Допустим, зимой при температуре -20 градусов в 1 литре воздуха содержится 1 миллиграмм пара. Относительная влажность в таком случае равна 100% — испарения не будет, больше пара в этот воздух уже не запихнешь.
Но если мы тот же воздух поместим в помещение с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40-50%.
Испарение в жизни
И действительно: чего в этой жизни только не испаряется — мы встречаемся с этим каждый день. Давайте узнаем, зачем этот процесс вообще нужен, и как люди научились извлекать из него пользу.
Испарение в организме человека и животных
Выше мы разбирали вопрос, почему если облиться теплой водой, нам все равно станет холодно. По этому же принципу работает ощущение холода после того, как мы вспотели — в какой-то момент нам становится холодно.
Само потоотделение — важный процесс терморегуляции организма. Если мы достигаем высокой температуры (из-за внешних воздействий или же из-за болезни), то организм стремится себя охладить, чтобы не умереть из-за превращения белков в нашем организме в яичницу.
Пот выделяется через поры кожи, а затем испаряется — все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализовать температуру.
При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой и «скинуть» избыточное тепло, но при высокой влажности пот не может испариться.
При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно. А при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.
У животных этот механизм работает схожим образом. Но, например, собакам испарения с кожи недостаточно, поэтому они часто открывают пасть, высовывают язык и дышат порой ну очень смешно 🐶
Именно гортань и язык собаки идеально подходят для испарения влаги и охлаждения тела животного.
Испарение у растений
Удивительно, но у растений механизм испарения тоже работает схожим образом. Растения очень любят воду, поэтому домашние растения мы поливаем, а в пустынях их просто нет.
Ту воду, которую цветы поглотили, они могут испарять, чтобы не перегреться под жарким солнцем. Да, вода нужна, чтобы растения питались, но в жаркие дни еще и для температурной саморегуляции. Поэтому не забывайте поливать цветы, а в очень жаркие дни делайте это еще интенсивнее.
Испарение в природе и окружающей среде
Процесс испарения напрямую связан с круговоротом воды в природе. Именно круговоротом воды в природе обеспечивается жизнь на Земле — так как влага разносится по всему миру, растения в дикой природе способны жить без наших попыток полить большую пальму из леечки.
Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, поливают растения и деревья. Многие дождь не любят, мол, он мокрый, мерзкий и затекает в ботинки, но он очень нужен засушливым регионам — Северной Африке или Центральной Индии, которые часто страдают от засухи.
Испарение в промышленности и быту
С бытом совсем все просто: мы сушим вещи, готовим еду, покупаем увлажнители воздуха или размазываем разлитую лужу по полу.
В случае с промышленностью для нас все не так очевидно. Промышленная техника, работающая на основе испарения, разрабатывается по схожей схеме: в ней всегда максимально увеличена площадь поверхности жидкости, чтобы испарение шло интенсивно.
Например, испаритель, изображенный на схеме, состоит из совокупности соединенных между собой испарителей. В основе его действия — пар, полученный в одной ступени, который используют в качестве источника тепла для следующей ступени. По мере того, как температура уменьшается от одной ступени к другой, вакуум увеличивается, так что температура кипения становится ниже и испарение поддерживается. Он предназначен для того, чтобы очистить воду от отходов.
Источник
Парообразование и конденсация
Жидкости могут превращаться в пар – такой процесс называют парообразованием. Существует и обратный процесс – конденсация, во время которого молекулы пара возвращаются в жидкость. Разберем эти процессы подробнее.
Процесс образования пара — парообразование
Жидкости имеют свойство переходить из жидкого состояния в газообразное — пар. Превращение жидкости в пар называется парообразованием.
Примечание: Словосочетание «Образование пара» физики часто заменяют словом «Парообразование».
Парообразование – это превращение жидкости в пар (газ).
Нальем в емкость какую-либо жидкость — например, воду, эфир, спирт, бензин, и т. п. Если не накрывать емкость крышкой, то через некоторое время количество жидкости в емкости уменьшается. Это происходит из-за парообразования.
Когда парообразование происходит на поверхности, его называют испарением.
Испарение – это образование пара на поверхности жидкости. Жидкости испаряются при любой температуре.
Примечание: Жидкости могут превращаться в пар с помощью двух процессов – испарения и кипения (ссылка).
Что происходит во время испарения
Во время испарения:
- с поверхности тела вылетают молекулы;
- улетающие молекулы уносят с собой часть внутренней энергии этого тела.
Почему при быстром испарении температура жидкости ощутимо понижается
Мы знаем, что температура влияет на скорость движения молекул.
При одной и той же температуре скорости соседних молекул немного различаются. Одни молекулы будут двигаться несколько быстрее других.
Часть молекул будет двигаться насколько быстро, что преодолеет притяжение соседних молекул жидкости и покинет ее. Такие молекулы испаряются и уносят с собой энергию.
Испарение – это эндотермический процесс. Он происходит с поглощением энергии.
Куда тратится полученная энергия? Ее забирают с собой испарившиеся молекулы, вылетевшие из жидкости.
Примечание: Из-за потерь тепловой энергии при испарении температура жидкости понижается. Чем быстрее испаряется жидкость, тем сильнее понижается ее температура.
Если же испарение происходит медленно, то потери теплоты успевают восполниться. Молекулы окружающего воздуха будут отдавать часть своей (тепловой) энергии молекулам жидкости и ее температура значительно понижаться не будет.
При быстром испарении температура жидкости понижается, а при медленном –значительно понижаться не успевает, так как теплопотеря восполняется из окружающей среды.
Могут ли испаряться твердые тела
Испаряются не только жидкости, но и твердые тела.
Жителям северных районов известно, что кусочки льда, не прикрытые снегом, со временем уменьшаются в размерах. Происходит выветривание льда. Лед испаряется даже при минусовой температуре воздуха.
Испаряются не только жидкости, но и твердые тела. Испарение твердых тел физики называют словом «сублимация» (или взгонка).
От чего зависит скорость испарения
Скорость, с которой вещество испаряется, зависит от:
- силы, с которой молекулы вещества притягиваются к соседним молекулам (род вещества),
- площади поверхности жидкости,
- движения воздуха над поверхностью жидкости (дует ли ветер, или нет),
- температуры (чем выше температура, тем интенсивнее испарение).
Рассмотрим влияние каждого из этих факторов подробнее.
Как влияет на испарение род вещества
Из жизненного опыта известно, что некоторые жидкости испаряются быстрее, другие — медленнее.
Возьмем воду и ацетон при одинаковой температуре и сравним скорости их испарения.
Если капнуть ацетон на руку, он начнет быстро испаряться и в месте контакта мы будем ощущать холод.
Примечание: Ощущение холода возникает из-за того, что испаряющиеся молекулы уносят с собой тепловую энергию.
А если руку смочить водой, то значительного ощущения холода не возникает.
Вода будет испаряться медленнее, потому, что молекулы воды притягиваются друг к другу сильнее, чем молекулы ацетона. Из-за этого, скорость испарения воды меньше скорости, с которой испаряется ацетон.
Примечание: Обычно, вместо фразы «Молекулы притягиваются сильно» физики говорят: «Потенциальная энергия взаимодействия молекул велика».
Быстро испаряющиеся вещества химики иногда называют летучими. Примерами таких летучих веществ могут служить медицинский спирт, бензин, ацетон и т. п. Такие вещества хорошо испаряются, потому, что невелики силы притяжения между их молекулами.
Скорость испарения зависит от рода вещества. В быстро испаряющихся веществах малы силы притяжения между молекулами.
Как влияет на испарение движение воздуха над поверхностью
Скорость испарения жидкости возрастает, когда воздух над ее поверхностью приходит в движение.
Некоторые испаряющиеся молекулы не имеют запаса кинетической энергии, чтобы улететь подальше от своей жидкости. Они остаются близко к поверхности и спустя какое-то время возвращаются назад в жидкость. Движение воздуха эти вылетевшие молекулы подхватывает и уносит, не давая им вернуться назад. Из-за этого, скорость испарения жидкости увеличивается.
Если подуть на мокрую руку, мы почувствуем ощущение прохлады отчетливее. Возникшее движение воздуха увеличило количество испаряющихся молекул. И теперь из жидкости уходит больше тепловой энергии. Это повлияло на усиление ощущения холода.
Когда над поверхностью жидкости движется воздух, жидкость испаряется быстрее.
Как влияет на испарение площадь поверхности жидкости
Нальем одинаковое количество воды в стакан и в блюдечко. Оставим эти емкости на столе на некоторое время. Через несколько дней мы заметим, что в стакане количество воды уменьшилось, а из блюдца вода испарилась полностью. Вода из блюдца испарилась быстрее, потому, что имела большую площадь поверхности.
Процесс испарения происходит у поверхности жидкости. Поэтому, чем больше поверхность жидкости, тем быстрее будет испаряться жидкость.
Скорость испарения жидкости зависит от площади ее поверхности. Чем больше площадь поверхности, тем быстрее испаряется жидкость.
Как влияет на испарение температура
Жидкости испаряются при любой температуре. А с ростом температуры скорость испарения возрастает. Потому, что возрастает количество молекул, обладающих энергией, достаточной, чтобы покинуть жидкость.
Примечание: Зависимость испарения от температуры в некоторых учебниках описывают так: При повышении температуры все большее количество молекул жидкости имеют кинетическую энергию, превышающую потенциальную энергию взаимодействия с соседними молекулами. Поэтому, с ростом температуры, скорость испарения жидкости возрастает.
Скорость испарения жидкости зависит от ее температуры. Чем выше температура, тем быстрее испаряется жидкость.
Примечание: Процесс образования пара в одних случаях называют испарением, а в других – кипением (ссылка).
Какой пар называют насыщенным
Из-за испарения воздух над жидкостью всегда содержит какое-то количество молекул, вылетевших из жидкости. Некоторые из испарившихся молекул могут вернуться обратно в жидкость. Рассмотрим процесс испарения и возвращения молекул подробнее. Для этого сопоставим, как происходит испарение в закрытом и открытом сосудах.
Сравним испарение в открытом и закрытом сосудах
Рассмотрим сосуд, например, кастрюльку, в которой происходит испарение жидкости.
Поначалу накрывать крышкой ее не будем. Молекулы, вылетевшие из открытого сосуда, будут уноситься движением окружающего кастрюльку воздуха. Благодаря этому масса жидкости в открытом сосуде со временем уменьшится.
Если же емкость накрыта крышкой (пробкой), то часть испарившихся молекул будет возвращаться обратно в жидкость. Потому, что в закупоренном сосуде нет движения больших масс воздуха над жидкостью. Поэтому, некоторые из испарившихся молекул вернутся из воздуха обратно в жидкость.
Масса жидкости, находящейся в закупоренном сосуде, со временем не меняется. Поэтому, жидкости хранят в сосудах, плотно закупоренных пробками.
Что такое динамическое равновесие пара и жидкости
Пусть жидкость находится в закрытом сосуде и испаряется. Поначалу, количество испаряющихся молекул увеличивается. Плотность пара, находящегося над жидкостью, возрастает.
Некоторые из вылетевших молекул возвращаются обратно в жидкость. Но при этом число вылетевших молекул, больше числа вернувшихся обратно.
Пар над жидкостью ненасыщенный, когда число вылетевших молекул больше числа вернувшихся в жидкость.
Время течет и плотность пара над жидкостью продолжает возрастать. Будет возрастать и количество вернувшихся в жидкость молекул.
А когда число вылетевших молекул сравняется с числом вернувшихся, плотность пара станет максимальной.
Теперь, если несколько молекул вылетит из жидкости, то такое же количество других молекул из пара вернется обратно в жидкость.
Такое состояние пара и жидкости называют динамическим равновесием. А пар называют насыщенным.
Пар над жидкостью насыщенный, когда число вылетевших молекул равно числу вернувшихся в жидкость. Такое состояние пара и жидкости — динамическое равновесие. Плотность насыщенного пара – самая высокая при любой выбранной температуре. Чем выше температура, тем больше будет плотность насыщенного пара.
Примечание: Плотность – это масса в объеме. Плотность измеряют в килограммах, деленных на кубический метр. Плотность отвечает на вопрос: «Какова масса одного кубометра вещества?».
Где применяется испарение
Благодаря испарению высыхают развешенные для просушки постиранные вещи.
На электро- и теплостанциях используются большие испарительные колонны – градирни. Они, благодаря испарению, охлаждают большое количество воды, использующейся там для технических нужд.
В кондиционерах и холодильниках применяют высоко летучие жидкости. Испаряясь, эти жидкости охлаждают воздух в помещениях или продукты, хранящиеся внутри холодильника.
И даже в космонавтике процесс испарения играет важную роль. Корпуса спускаемых космических аппаратов покрывают веществами, способными быстро испаряться. Проходя через атмосферу, оболочка капсулы разогревается. А вещество покрытия, испаряясь, охлаждает капсулу и спасает находящихся внутри космонавтов от действия высоких температур.
Что такое конденсация
Если закупоренный прозрачный сосуд с водой из теплого места переместить в прохладное, то через некоторое время на стенках этого сосуда появятся капельки.
Капли жидкости на стенках появляются потому, что существует процесс, обратный испарению. Во время такого процесса молекулы из пара возвращаются обратно в жидкость.
Свое название – конденсация — этот процесс получил от латинского слова «Конденсаре» — сгущать.
Конденсация – это переход молекул из пара в жидкость, процесс обратный парообразованию.
Круговорот воды в природе происходит благодаря процессам конденсации и испарения. Конденсация – это причина появления росы и осадков.
Что происходит во время конденсации
Во время конденсации происходит смена агрегатного состояния вещества:
- молекулы пара из воздуха возвращаются обратно в жидкость;
- возвратившиеся молекулы приносят с собой энергию, которая при их переходе в жидкость передается в окружающее пространство.
Дело в том, что молекулы, находящиеся в жидкости, будут двигаться медленнее молекул пара. Когда молекулы пара конденсируются в жидкость, их кинетическая энергия уменьшается. Излишки энергии передаются в окружающую среду.
Процесс конденсации – экзотермический процесс, потому, что при конденсации в окружающую среду выделяется энергия.
Источник