Способ обратной линейно угловой засечки

Обратная угловая засечка в геодезических измерениях

Засечкой называют относительно простой метод вычисления координат некоторой точки посредством измерения на ней углов и расстояний по направлению на уже закрепленные на местности контуры.

К ней достаточно часто прибегают в различных геологических, строительных и инженерных работах за счет ее простоты и экономичности. На практике обратная засечка чаще всего используются для вычисления координат пунктов геодезической сети, выноса в натуру проектных точек и т.д.

Опытный геодезист сможет без труда провести нужные измерения при помощи теодолита, тахеометра или любого другого прибора всего за пару минут.

Виды засечек

В зависимости от местности и способов построения сетей сгущения в геодезии существует два основных вида привязки к опорным пунктам:

  1. Непосредственная. Подразумевает привязку теодолитного или полигонометрического хода к триангуляционным пунктам высшего класса с возможностью выполнить измерения примычных углов. Используется в тех случаях, когда на опорных точках можно выполнить те же измерения, что и на соседних.
  2. Косвенная. Проводится только при отсутствии возможности провести непосредственные измерения примычных длин и углов. К этому виду привязки и относится засечка.

По способу же построения геодезическая засечка бывает:

  • линейной (полярные и биполярные по числу пунктов);
  • угловой (прямая и обратная);
  • комбинированной (положение точки определяют по известным углам и линейным расстояниям).

В геодезии чаще всего прибегают к комбинированию прямой и обратной засечек. Кроме того, чтобы полученные результаты были наиболее достоверными, измеряют больше величин, чем нужно, а само местоположение искомых пунктов получают посредством уравнивания.

Однократная и многократная засечка

Если для определения координат берется только один исходный пункт, то такая засечка будет называться однократной, а если более трех – многократной.

В основе обратной однократной угловой засечки лежит так называемая задача Потенота, которая была названа в честь французского математика Лорана Потенота, удачно решившего ее еще в 1692 году. Ученый предложил по известным значениям трех близлежащих точек вычислять координаты искомой.

На сегодняшний день существует уже более ста вариаций ее решения, которые были предложены многими именитыми учеными, но в геодезической практике наибольшую популярность получили формулы Жана Деламбра, Кнейссля и Гаусса.

Рисунок 1. Обратная многократная засечка

Важно отметить, что достоверные данные удается получить только в тех случаях, когда искомая точка находится в пределах треугольника, который образовали исходные пункты или же вне его, но напротив одной из его вершин.

Если же искомая точка попадает в пределы окружности, проходящей через эти точки, она становится неопределяемой. Этот ключевой недостаток в задаче Потенота, именуемый опасным кругом, приводит к необходимости определения дополнительной точки.

Обратная многократная угловая засечка как раз и подразумевает определение местоположения пункта через измерения на этом самом пункте углов или направлений как минимум на четыре твердых пункта, чьи координаты установлены. Этот метод более трудоемкий, но гарантирует надежный контроль результатов измерений. При обработке данных используют метод Гаусса-Ньютона, который в геодезии также называют параметрическим.

Читайте также:  Способы определения неисправностей оборудования

Способ Деламбра

Решение обратной засечки при помощи этого способа выполняется в такой последовательности:

    Вычисляется дирекционный угол исходного направления с отметки 1 на точку «0» по формуле обратной геодезической засечки:

Значения дирекционных углов с исходных отметок Т2, Т3, Т4 получают из формул:

  • Находят координаты точки Р с помощью формул тангенсов или котангенсов дирекционных углов направлений.
  • Способ Кнейссля

    Аналогично способу Деламбра последовательность формул при решении задачи обратной геодезической засечки по Кнейсслю будет иметь следующий вид:

      Определяются вспомогательные коэффициенты:

    Вычисляется котангенс дирекционного угла исходного направления на заданный пункт:

    Приращения координаты точки Р относительно исходного пункта 1 находят при помощи нижеприведенных формул:

    \(\Delta x_<1-p>=c\cdot \Delta y_<1-p>\)

    Определяются координаты точки Р:

    \(y_

    =y_<1>+\Delta y_<1-p>\)

    Средняя квадратическая погрешность вычисления местоположения пункта Р по трем направлениям вычисляется при помощи выражения:

    Оценивается точность обратной угловой засечки по способу Кнейссля с определением погрешности:

    Допустимость в расхождениях полученных значений двух вариантов решений выполняется по формуле:

    Если данное условие соблюдено, то итоговое значение координат берется как среднее арифметическое значение из результатов двух решений.

    Уравнивание при помощи параметрического способа

    Под определение обратной многократной угловой засечки попадает как совокупность простых однократных измерений, так и просто большое количество избыточных. Однако в обоих случаях необходимо уравнивание, которое выполняется по измеренным углам и направлениям.

    К примеру, неизвестные \(x_

    \) и \(y_

    \) – координаты точки Р, которые в данном способе будут представлены в качестве параметров. Для этого их представляют в виде приближенных значений \(x_<0>\), \(y_<0>\) и поправок к ним \(δх\) и \(δу\).

    В приведенном уравнении \(x_<0>\) и \(y_<0>\) – результаты обработки однократных засечек, а \(δх\) и \(δу\) получают через уравнивание методом наименьших квадратов параметрическим способом с применением дифференциальных формул.

    Этот метод подразумевает применение не только параметрического, но и коррелатного способа. Они дают одинаковые результаты, но отличаются по объему вычислений.

    Однако в геодезической практике целесообразнее применять параметрический способ, поскольку при любом количестве избыточных измерений число нормальных уравнений будет аналогично числу неизвестных. При этом каждое неизвестное будет представлено в виде суммы приближенного значения и его поправки.

    Сферы применения

    Обратная угловая засечка нашла широкое применение в строительстве высотных зданий и сооружений, вроде опорных конструкций для мостов и дымовых труб. Кроем того, она позволяет быстро построить строительную сетку или определить местоположение точки в пространстве. В геодезии ее нередко используют в трилатерации и триангуляции.

    Нельзя также не упомянуть ее огромного практического значения в навигации и военном деле. В частности, засечка по обратным дирекционным углам используется для топографогеодезической подготовки командно-наблюдательного пункта и позиции ведения огня.

    Источник

    Обратная угловая засечка в геодезии

    Доброго времени суток, уважаемые читатели моего блога!

    Определение положения точки посредством измерения углов (направлений) на определяемой точке, на три и более пункта с известными координатами в геодезии – это и есть обратная угловая засечка. Если исходных пунктов три – это однократная угловая засечка, если больше – многократная угловая засечка.

    Читайте также:  Мейоз способ деления при котором образуются

    Французский математик Л.Потенот в 1692 году предложил математическое решение задачи по определению координат искомой точки по известным координатам трёх других точек. Сейчас решений этой задачи существует более ста. Один из видов решения – использование формул Жана Деламбра, французского геодезиста, астронома, метролога. Обратная засечка по Деламбру определяется через нумерацию исходных точек и углов по часовой стрелке с выбранным начальным направлением.

    На рисунке 1 начерчена схема обратной засечки в соответствии с формулами Деламбра. Пункты триангуляции Т1, Т2, Т3 – исходные, точка (пункт) Р – определяемая, выбрано начальное направление – РТ1, на пункте Р измерены углы β1, β2 в направлении пунктов Т2, Т3.

    Рис. 1. Обратная однократная угловая засечка (схема).

    Сначала нужно определить дирекционный угол начального направления РТ1:

    Итог: прямая угловая засечка с известными углами направлений с точки Р на исходные пункты. Известный способ определения координат Хр, Ур точки Р – это необходимое и достаточное применение формул Гаусса, которые выражаются через координаты исходных точек, вернее, их приращения:

    Вычисления координат пункта Р происходит дважды; процесс вычисления, таким образом контролируется. Угол α2 высчитывается так:

    Необходимо понимать, что значения α2, которое произведено по формуле 1.8, может не соответствовать значению, вычисленному по формуле 1.2 – на 180 градусов. Это связано с тем, что знаки числителя, знаменателя (формула 5.1) не могут определить приращения координат ∆х, ∆у. Контролируемое значение α2 требует определения знаков и четверти на карте проекта, где отмечены вставки точек методом обратной засечки.

    Аксиомой является то, что у обратной угловой засечки с тремя исходными пунктами нет решения, если пункт, который определяется, расположен на одной и той же окружности, что и исходные точки. Такая окружность называется «опасной». Удаление от неё определяемой точки на 0,1 х R (радиус окружности), обеспечит точность местоположения пункта, который является искомым.

    Рис. 2. «Опасная» зона в обратной угловой засечке.

    Если при схематичном составлении на карте (плане) обратной угловой засечки, пункт, который вычисляется, расположен в границах треугольника с вершинами – исходными пунктами (точками), можно констатировать, что «опасной окружности» здесь нет. В иных случаях, сообразно геометрическим законам, на карте (плане) строится окружность, которая проходит через 3 исходных пункта, после чего визуально определяется «опасная» зона для вычисляемого пункта.

    Для работы по формулам обратной угловой засечки существует программа вычислений в режиме он-лайн, которая базируется на сайте map-info.ru. Ещё один способ определения необходимого пункта – это обратная линейно – угловая засечка. О ней поговорим в следующий раз.

    На этом все друзья. Спасибо за внимание. Отличного Вам дня и хорошего настроения. Пока!!

    Источник

    Основы геодезии

    О геодезии и разный полезный материал для геодезистов.

    Обратная угловая засечка

    К элементарным измерениям относится и измерение угла β на определяемой точке P между направлениями на два пункта A и B с известными координатами XA, YA и XB, YB (рис.2.10). Однако, это измерение оказывается теоретически довольно сложным, поэтому рассмотрим его отдельно.

    Читайте также:  Персик способ распространения семян биология

    Проведем окружность через три точки A, B и P. Из школьного курса геометрии известно, что угол с вершиной на окружности измеряется половиной дуги, на которую он опирается. Центральный угол, опирающийся на ту же дугу, измеряется всей дугой, следовательно, он будет равен 2β (рис.2.10).

    Расстояние b между пунктами A и B считается известным, и из прямоугольного треугольника FCB можно найти радиус R окружности:

    Уравнение окружности имеет вид:

    где XC и YC – координаты центра окружности. Их можно вычислить, решив либо прямую угловую, либо линейную засечку с пунктов A и B на точку C. В уравнении (2.42) X и Y – координаты любой точки окружности, в том числе и точки P, но для нахождения двух координат точки P одного такого уравнения недостаточно.

    Обратной угловой засечкой называют способ определения координат точки P по двум углам β1 и β2, измеренным на определяемой точке P между направлениями на три пункта с известными координатами A, B, C (рис.2.11).

    Графическое решение. Приведем способ Болотова графического решения обратной угловой засечки. На листе прозрачной бумаги (кальки) нужно построить углы β1 и β2 с общей вершиной P; затем наложить кальку на чертеж и, перемещая ее, добиться, чтобы направления углов на кальке проходили через пункты A, B, C на чертеже; переколоть точку P с кальки на чертеж.

    Исходные данные: XA, YA, XB,
    YB, XC, YC;

    Измеряемые элементы: β1, β2.

    Неизвестные элементы: X, Y.

    Аналитическое решение. Аналитическое решение обратной угловой засечки предусматривает ее разложение на более простые задачи, например, на 2 прямых угловых засечки и одну линейную, или на 3 линейных засечки и т.д. Известно более 10-ти способов аналитического решения, но мы рассмотрим только один – через последовательное решение трех линейных засечек.

    Предположим, что положение точки P известно, и проведем две окружности: одну радиусом R1 через точки A, B и P и другую радиусом R2 через точки B, C и P (рис.2.11). Радиусы этих окружностей получим по формуле (2.41):

    Если координаты центров окружностей – точек O1 и O2 будут известны, то координаты точки P можно определить по формулам линейной засечки: из точки O1 по расстоянию R1 и из точки O2 – по расстоянию R2.

    Координаты центра O1 можно найти по формулам линейной засечки из точек A и B по расстояниям R1, причем из двух решений нужно взять то, которое соответствует величине угла β1: если β1 90o, то точка O1 находится слева от линии AB.

    Координаты центра O2 находятся по формулам линейной засечки из точек B и C по расстояниям R2, и одно решение из двух возможных выбирается по тому же правилу: если β2 90, то точка O2 находится слева от линии BC.

    Задача не имеет решения, если все четыре точки A, B, C и P находятся на одной окружности, так как обе окружности сливаются в одну, и точек их пересечения не существует.

    Источник

    Оцените статью
    Разные способы