Способ обработки результатов измерений

Способ обработки результатов измерений

ГОСТ Р 8.736-2011

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

ИЗМЕРЕНИЯ ПРЯМЫЕ МНОГОКРАТНЫЕ

Методы обработки результатов измерений. Основные положения

State system for ensuring the uniformity of measurements. Multiple Direct measurements. Methods of measurement results processing. Main positions

Дата введения 2013-01-01

Предисловие

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологии им.Д.И.Менделеева» (ФГУП «ВНИИМ им.Д.И.Менделеева»)

2 ВНЕСЕН Управлением метрологии Федерального агентства по техническому регулированию и метрологии

4 ВВЕДЕН ВПЕРВЫЕ

5 ПЕРЕИЗДАНИЕ. Март 2019 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт распространяется на прямые многократные независимые измерения и устанавливает основные положения методов обработки результатов этих измерений и вычисления погрешностей оценки измеряемой величины.

В настоящем стандарте учтены требования, предъявляемые к методам и результатам измерений в соответствии с ГОСТ Р ИСО 5725-1, ГОСТ Р ИСО 5725-2, ГОСТ Р ИСО 5725-3, ГОСТ Р ИСО 5725-4, ГОСТ Р ИСО 5725-5, ГОСТ Р ИСО 5725-6.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р ИСО 5725-1 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения

ГОСТ Р ИСО 5725-2 Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений

ГОСТ Р ИСО 5725-3 Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений

ГОСТ Р ИСО 5725-4 Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений

ГОСТ Р ИСО 5725-5 Точность (правильность и прецизионность) методов и результатов измерений. Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений

ГОСТ Р ИСО 5725-6 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

Читайте также:  Инновации как способ достижения конкурентного преимущества

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями.

результат измерения физической величины; результат измерения; результат: Значение величины, полученное путем ее измерения.

[Рекомендации по межгосударственной стандартизации [1], статья 8.1]

3.2 неисправленный результат измерений величины: Результат измерений величины, полученный до введения в него поправки в целях устранения систематических погрешностей.

3.3 исправленный результат измерений величины: Результат измерений величины, полученный после введения поправки в целях устранения систематических погрешностей в неисправленный результат измерений величины.

3.4 неисправленная оценка измеряемой величины: Среднее арифметическое значение результатов измерений величины до введения в них поправки в целях устранения систематических погрешностей.

3.5 исправленная оценка измеряемой величины: Среднее арифметическое значение результатов измерений величины после введения поправки в целях устранения систематических погрешностей в неисправленную оценку измеряемой величины.

3.6 группа результатов измерений величин: Несколько результатов измерений (не менее четырех, 4), полученных при измерениях одной и той же величины, выполненных с одинаковой тщательностью, одним и тем же средством измерений, одним и тем же методом и одним и тем же оператором.

3.7 погрешность измерения: Разность между результатом измерения величины и действительным (опорным) значением величины.

3.8 случайная погрешность измерения; случайная погрешность: Составляющая погрешности измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях одной и той же величины, проведенных с одинаковой тщательностью.

3.9 систематическая погрешность измерения; систематическая погрешность: Составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины, проведенных с одинаковой тщательностью.

3.10 неисключенная систематическая погрешность измерения: Составляющая погрешности измерения, обусловленная погрешностью оценивания систематической погрешности, на которую введена поправка, или систематической погрешностью, на которую поправка не введена.

3.11 грубая погрешность измерения: Погрешность измерения, существенно превышающая зависящие от объективных условий измерений значения систематической и случайной погрешностей.

4 Общие положения

4.1 Необходимость выполнения прямых многократных измерений устанавливают в конкретных методиках измерений.

Примечание — Под многократными измерениями понимают не менее четырех измерений.

4.2 При статистической обработке группы результатов прямых многократных независимых измерений выполняют следующие операции:

— исключают известные систематические погрешности из результатов измерений;

— вычисляют оценку измеряемой величины;

— вычисляют среднее квадратическое отклонение результатов измерений;

— проверяют наличие грубых погрешностей и при необходимости исключают их;

— проверяют гипотезу о принадлежности результатов измерений нормальному распределению;

— вычисляют доверительные границы случайной погрешности (доверительную случайную погрешность) оценки измеряемой величины;

— вычисляют доверительные границы (границы) неисключенной систематической погрешности оценки измеряемой величины;

— вычисляют доверительные границы погрешности оценки измеряемой величины.

4.3 Проверку гипотезы о том, что результаты измерений принадлежат нормальному распределению, проводят с уровнем значимости от 10% до 2%. Конкретные значения уровней значимости должны быть указаны в конкретной методике измерений.

4.4 Для определения доверительных границ погрешности оценки измеряемой величины доверительную вероятность принимают равной 0,95.

В случаях, когда измерение не представляется возможным повторить, помимо границ, соответствующих доверительной вероятности 0,95, допускается указывать границы для доверительной вероятности 0,99.

В особых случаях, например при измерениях, результаты которых имеют значение для здоровья людей, допускается кроме доверительной вероятности 0,99 указывать более высокую доверительную вероятность.

4.5 В настоящем стандарте изложены требования к методам обработки результатов измерений и к оцениванию точности измеряемой величины посредством погрешностей.

5 Оценка измеряемой величины и среднее квадратическое отклонение

5.1 Оценку измеряемой величины , за которую принимают среднее арифметическое значение исправленных результатов измерений, вычисляют по формуле

Читайте также:  Антигриппин анви способы применения

, (1)

где — -й результат измерений;

— число исправленных результатов измерений.

Примечание — Если во всех результатах измерений содержится постоянная систематическая погрешность, ее допускается исключить из вычисленного среднего арифметического значения неисправленных результатов измерений.

5.2 В целях удобства вычислений формулу (1) допускается записать в виде

, (2)

где — близкое к значение, удобное для расчета;

.

5.3 Среднее квадратическое отклонение группы, содержащей результатов измерений, вычисляют по формуле

. (3)

Примечание — Наличие случайных погрешностей вызывает рассеяние результатов измерений. В качестве основной числовой характеристики случайного рассеяния результатов измерений принята дисперсия или стандартное отклонение . Ограниченное число результатов измерений позволяет получать лишь оценки этих характеристик ( и ). Математическое ожидание оценки равно дисперсии , однако математическое ожидание оценки отлично от , так как оценка смещена.

Несмещенную оценку допускается вычислять по упрощенной формуле

.

Источник

Способ обработки результатов измерений

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Государственная система обеспечения единства измерений

ПРЯМЫЕ ИЗМЕРЕНИЯ С МНОГОКРАТНЫМИ НАБЛЮДЕНИЯМИ.
МЕТОДЫ ОБРАБОТКИ РЕЗУЛЬТАТОВ НАБЛЮДЕНИЙ

State system for ensuring the uniformity of measurements.
Direct measurements with multiple observations.
Methods of processing the results of observations.
Basic principles

Дата введения 1977-01-01

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного комитета стандартов Совета Министров СССР от 15 марта 1976 г. N 619

ПЕРЕИЗДАНИЕ. Август 1985 г.

Настоящий стандарт распространяется на нормативно-техническую документацию, предусмотренную ГОСТ 8.010-72 и регламентирующую методику выполнения прямых измерений с многократными независимыми наблюдениями, и устанавливает основные положения методов обработки результатов наблюдений и оценивания погрешностей результатов измерений.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. При статистической обработке группы результатов наблюдений следует выполнить следующие операции:

исключить известные систематические погрешности из результатов наблюдений;

вычислить среднее арифметическое исправленных результатов наблюдений, принимаемое за результат измерения;

вычислить оценку среднего квадратического отклонения результата наблюдения;

вычислить оценку среднего квадратического отклонения результата измерения;

проверить гипотезу о том, что результаты наблюдений принадлежат нормальному распределению;

вычислить доверительные границы случайной погрешности (случайной составляющей погрешности) результата измерения;

вычислить границы неисключенной систематической погрешности (неисключенных остатков систематической погрешности) результата измерения;

вычислить доверительные границы погрешности результата измерения.

1.2. Проверку гипотезы о том, что результаты наблюдений принадлежат нормальному распределению, следует проводить с уровнем значимости от 10 до 2%. Конкретные значения уровней значимости должны быть указаны в конкретной методике выполнения измерений.

1.3. Для определения доверительных границ погрешности результата измерения доверительную вероятность принимают равной 0,95.

В тех случаях, когда измерение нельзя повторить, помимо границ, соответствующих доверительной вероятности =0,95, допускается указывать границы для доверительной вероятности =0,99.

В особых случаях, например при измерениях, результаты которых имеют значение для здоровья людей, допускается вместо =0,99 принимать более высокую доверительную вероятность.

2. РЕЗУЛЬТАТ ИЗМЕРЕНИЯ И ОЦЕНКА ЕГО СРЕДНЕГО КВАДРАТИЧЕСКОГО ОТКЛОНЕНИЯ

2.1. Способы обнаружения грубых погрешностей должны быть указаны в методике выполнения измерений.

Если результаты наблюдений можно считать принадлежащими к нормальному распределению, грубые погрешности исключают в соответствии с указаниями, приведенными в ГОСТ 11.002-73.

2.2. За результат измерения принимают среднее арифметическое результатов наблюдений, в которые предварительно введены поправки для исключения систематических погрешностей.

Примечание. Если во всех результатах наблюдений содержится постоянная систематическая погрешность, допускается исключать ее после вычисления среднего арифметического неисправленных результатов наблюдений.

2.3. Среднее квадратическое отклонение результата наблюдения оценивают согласно разд. 1 ГОСТ 11.004-74.

2.4. Среднее квадратическое отклонение ( ) результата измерения оценивают по формуле

,

где — -й результат наблюдения;

— результат измерения (среднее арифметическое исправленных результатов наблюдений);

— число результатов наблюдений;

— оценка среднего квадратического отклонения результата измерения.

Читайте также:  Понятия числовой функции способы задания функций

3. ДОВЕРИТЕЛЬНЫЕ ГРАНИЦЫ СЛУЧАЙНОЙ ПОГРЕШНОСТИ РЕЗУЛЬТАТА ИЗМЕРЕНИЯ

3.1. Доверительные границы случайной погрешности результата измерения в соответствии с настоящим стандартом устанавливают для результатов наблюдений, принадлежащих нормальному распределению.

Если это условие не выполняется, методы вычисления доверительных границ случайной погрешности должны быть указаны в методике выполнения конкретных измерений.

3.1.1. При числе результатов наблюдений > 50 для проверки принадлежности их к нормальному распределению по ГОСТ 11.006-74 предпочтительным является один из критериев: Пирсона или Мизеса-Смирнова.

3.1.2. При числе результатов наблюдений 50> >15 для проверки принадлежности их к нормальному распределению предпочтительным является составной критерий, приведенный в справочном приложении 1.

При числе результатов наблюдений 15 принадлежность их к нормальному распределению не проверяют. При этом нахождение доверительных границ случайной погрешности результата измерения по методике, предусмотренной настоящим стандартом, возможно в том случае, если заранее известно, что результаты наблюдений принадлежат нормальному распределению.

3.2. Доверительные границы (без учета знака) случайной погрешности результата измерения находят по формуле

,

где — коэффициент Стьюдента, который в зависимости от доверительной вероятности и числа результатов наблюдений находят по таблице справочного приложения 2.

4. ДОВЕРИТЕЛЬНЫЕ ГРАНИЦЫ НЕИСКЛЮЧЕННОЙ СИСТЕМАТИЧЕСКОЙ ПОГРЕШНОСТИ РЕЗУЛЬТАТА ИЗМЕРЕНИЯ

4.1. Неисключенная систематическая погрешность результата образуется из составляющих, в качестве которых могут быть неисключенные систематические погрешности:

вызванные другими источниками.

В качестве границ составляющих неисключенной систематической погрешности принимают, например, пределы допускаемых основных и дополнительных погрешностей средств измерений, если случайные составляющие погрешности пренебрежимо малы.

4.2. При суммировании составляющих неисключенной систематической погрешности результата измерения неисключенные систематические погрешности средств измерений каждого типа и погрешности поправок рассматривают как случайные величины. При отсутствии данных о виде распределения случайных величин их распределения принимают за равномерные.

4.3. Границы неисключенной систематической погрешности результата измерения вычисляют путем построения композиции неисключенных систематических погрешностей средств измерений, метода и погрешностей, вызванных другими источниками. При равномерном распределении неисключенных систематических погрешностей эти границы (без учета знака) можно вычислить по формуле

,

где — граница -й неисключенной систематической погрешности;

— коэффициент, определяемый принятой доверительной вероятностью. Коэффициент принимают равным 1,1 при доверительной вероятности =0,95.

При доверительной вероятности =0,99 коэффициент принимают равным 1,4, если число суммируемых неисключенных систематических погрешностей более четырех ( >4). Если же число суммируемых погрешностей равно четырем или менее четырех ( 4), то коэффициент определяют по графику зависимости (см. чертеж).

,

где — число суммируемых погрешностей;

; кривая 1-m = 2; кривая 2-m = 3; кривая 3-m = 4.

График зависимости

При трех или четырех слагаемых в качестве принимают составляющую, по числовому значению наиболее отличающуюся от других, в качестве следует принять ближайшую к составляющую.

Доверительную вероятность для вычисления границ неисключенной систематической погрешности принимают той же, что при вычислении доверительных границ случайной погрешности результата измерения.

5. ГРАНИЦА ПОГРЕШНОСТИ РЕЗУЛЬТАТА ИЗМЕРЕНИЯ

5.1. В случае, если 8, то случайной погрешностью по сравнению с систематическими пренебрегают и принимают, что граница погрешности результата .

Примечание. Погрешность, возникающая из-за пренебрежения одной из составляющих погрешности результата измерения при выполнении указанных неравенств, не превышает 15%.

5.2. В случае, если неравенства п. 5.1 не выполняются, границу погрешности результата измерения находят путем построения композиции распределений случайных и неисключенных систематических погрешностей, рассматриваемых как случайные величины в соответствии с п. 4.3. Если доверительные границы случайных погрешностей найдены в соответствии с разд. 3 настоящего стандарта, допускается границы погрешности результата измерения (без учета знака) вычислить по формуле

,

где — коэффициент, зависящий от соотношения случайной и неисключенной систематической погрешностей;

— оценка суммарного среднего квадратического отклонения результата измерения.

Источник

Оцените статью
Разные способы