Разложение многочлена на множители методом неопределенных коэффициентов
Разложение многочлена на множители методом неопределенных коэффициентов
В этой статье мы рассмотрим решение уравнения четвертой степени с помощью разложения на множители методом неопределенных коэффициентов.
Решить уравнение:
Перед нами уравнение четвертой степени.
Чтобы решить это уравнение, разложим левую часть уравнения на множители.
Многочлен четвертой степени можно разложить на произведение двух многочленов второй степени.
Воспользуемся методом неопределенных коэффициентов.
Пусть выполняется равенство:
Здесь -целые числа.
Перемножим две скобки справа и приведем подобные члены. Получим:
Два многочлена равны тогда и только тогда, когда равны их коэффициенты.
Приравняем коэффициенты при одинаковых степенях и получим систему уравнений:
Без ограничения общности можем считать, что
, тогда пусть
, отсюда
или
.
Рассмотрим два случая:
,
Получим систему уравнений:
Из второго и третьего уравнений получаем — что не удовлетворяет третьему уравнению. Система не имеет решений.
2. ,
Из второго и третьего уравнений получаем — и эти значения удовлетворяет третьему уравнению.
Получили:
Тогда наше разложение имеет вид:
Осталось приравнять квадратные трехчлены в скобках к нулю и найти корни:
Ответ: ,
Источник
Метод неопределенных коэффициентов
Как разделить многочлен на многочлен методом неопределенных коэффициентов
Для деление многочлена на многочлен, кроме способа деления многочленов «уголком», можно использовать метод неопределенных коэффициентов. Суть этого метода заключается в следующем.
Пусть требуется поделить многочлен
b(x)= bmx m + bm-1x m-1 + bm-2x m-2 + . + b1x + b0,
то есть требуется представить многочлен a(x) в виде a(x)=b(x)* c(x) + r(x),
где многочлен a(x) — делимое, многочлен b(x) — делитель, многочлен с(x) — частное, а многочлен r(x) — остаток.
Степень частного c(x) равна разности степеней делимого и делителя, а степень остатка r(x) меньше степени делителя, следовательно, максимальная степень r(x) может быть равна m-1.
Таким образом, частное c(x) – это многочлен степени n-m с неизвестными коэффициентами сi
а остаток r(x) — многочлен степени m-1 с неизвестными коэффициентами rj
Чтобы найти неизвестные коэффициенты сi и rj, просто перемножим b(x)* c(x), сложим с r(x) и приравняем коэффициенты многочленов при одинаковых степенях x в левой и правой частях равенства a(x)=b(x)* c(x) + r(x).
Рассмотрим примеры, иллюстрирующие использование метода неопределенных коэффициентов при делении многочлена на многочлен. Пример 1. Разделить многочлен 5x 4 — 3x 3 + 2x 2 — x + 3 на многочлен x 3 — 2x 2 + 1 методом неопределенных коэффициентов.
Делимое a(x)=5x 4 — 3x 3 + 2x 2 — x + 3 — многочлен степени 4,
делитель b(x)= x 3 — 2x 2 + 1 — многочлен степени 3.
Следовательно, частное c(x) — многочлен степени 4-3 = 1
а остаток r(x) — многочлен степени 3-1=2
Приравняв коэффициенты при одинаковых степенях x в равенстве
получим систему уравнений для нахождения неизвестных c0, c1, r0, r1, r2.
Последовательно решая уравнения с помощью подстановки известных значений сi, rj, найдем решение системы
Следовательно, c(x) = 5x + 7; r(x)=16x 2 — 6x — 4.
Ответ: 5x 4 — 3x 3 + 2x 2 — x + 3 = (x 3 — 2x 2 + 1)*(5x + 7) + 16x 2 — 6x — 4.
Калькуляторы для решение примеров и задач по математике
Лучшие математические приложения для школьников и их родителей, студентов и учителей. Подробнее .
Пример 2. Разделить многочлен 6x 5 — 11x 4 + 10x 3 — 10x 2 + 3x — 2 на многочлен 2x 3 — 3x 2 + x — 1 методом неопределенных коэффициентов.
Делимое a(x) = 6x 5 — 11x 4 + 10x 3 — 10x 2 + 3x — 2 — многочлен степени 5,
делитель b(x)= 2x 3 — 3x 2 + x — 1 — многочлен степени 3.
Следовательно, частное c(x) — многочлен степени 5-3 = 2
а остаток r(x) — многочлен степени 3-1=2
Перемножая и складывая многочлены в выражении b(x)*c(x) + r(x), получаем
Приравнивая коэффициенты при одинаковых степенях x в равенстве a(x)=b(x)* c(x) + r(x),
получим систему уравнений для нахождения неизвестных c0, c1, c2, r0, r1, r2
Последовательно решая уравнения с помощью подстановки известных значений сi, rj, найдем решение системы
c2=3,
c1=-1,
c0=2,
r2=0,
r1=0,
r0=0.
Следовательно, c(x)=3x 2 — x + 2; r(x)=0.
Ответ: 6x 5 — 11x 4 + 10x 3 — 10x 2 + 3x — 2 = (2x 3 — 3x 2 + x — 1)*(3x 2 — x + 2).
Источник
Метод неопределенных коэффициентов и его универсальность
Разделы: Математика
Применение метода неопределённых коэффициентов основано на следующих двух теоремах.
Теорема №1 (о многочлене, тождественно равном нулю).
Если при произвольных значениях аргумента x значение многочлена f(x) = а0+ а1х + а2х 2 +. + а nx n , заданного в стандартном виде, равно нулю, то все его коэффициенты а0, а1, а2, . аn равны нулю.
Теорема №2 (следствие теоремы № 1).
Деление многочлена на многочлен.
Пример 1. Выполнить деление многочлена х 5 – 6х 3 + 2х 2 -4 на многочлен х 2 – х + 1.
Решение: Надо найти такие многочлены Q(x) и R(x), что х 5 – 6х 3 + 2х 2 -4 = (х 2 – х + 1) Q(x) + R(x), причём степень многочлена R(x) меньше степени многочлена (х 2 – х + 1). Из того, что степень произведения многочленов равна сумме их степеней, следует, что степень многочлена Q(x) равна 5 – 2 = 3.
Многочлены Q(x) и R(x) имеют вид:
Раскроем скобки в правой части равенства:
Для отыскания неизвестных коэффициентов получаем систему уравнений:
Ответ: Q(x) = x 3 + x 2 — 6x — 5, R(x) = x + 1.
Пример 2. Выполнить деление многочлена х 7 –1 на многочлен х 3 + х + 1.
Решение: Надо найти такие многочлены Q(x) и R(x), что х 7 –1 = (х 3 + х + 1) Q(x) + R(x), причём степень многочлена R(x) меньше степени многочлена (х 3 + х + 1).
Из того, что степень произведения многочленов равна сумме их степеней, следует, что степень многочлена Q(x) равна 7– 3 = 4.
Многочлены Q(x) и R(x) имеют вид: Q(x) = q 4x 4 + q 3x 3 + q 2x 2 + q 1x + q0,
R(x) = r 2x 2 + r 1x + r0.
Подставим Q(x) и R(x):
Раскроем скобки в правой части равенства:
Получаем систему уравнений:
Ответ: Q(x) = x 4 — x 2 — x + 1, R(x) = 2x 2 — 2.
Расположение многочлена по степеням.
Возьмем функцию Поставим перед собой задачу «расположить многочлен по степеням f(x) по степеням (х-х0).
Задача сводится к нахождению неизвестных коэффициентов а0, а1, . аn. В каждом конкретном случае эти числа найти легко. Действительно, расположим многочлены, находящиеся в левой и правой частях равенства, по степеням x. Так как мы имеем тождество, то (по теореме № 2) коэффициенты при одинаковых степенях x должны быть равны между собой. Приравняв коэффициенты правой части соответствующим заданным коэффициентам левой, мы придем к системе n+1 уравнений с n+1 неизвестными а0, а1, . аn , которую нужно решить.
Пример 3. Расположим многочлен по степеням.
Приравниваем коэффициенты при одинаковых степенях и получаем систему:
Решая систему, находим:
Ответ: .
Пример 4. Расположим f(x) = х 4 — 8х 3 + 24х 2 — 50х + 90 по степеням (х-2).
Решение: Полагаем х4 — 8х 3 + 24х 2 — 50х + 90
Ответ: f(x) =
Представление произведения в виде многочлена стандартного вида.
Пример 5. Не выполняя действий, представим в виде многочлена стандартного вида произведение (х — 1)(х + 3)(х + 5).
Решение: Произведение есть многочлен третьей степени, коэффициент при старшем члене равен 1, а свободный член равен (- 15), тогда запишем:
(х — 1)(х + 3)(х + 5) = х 3 + ах 2 + вх — 15, где а и в — неизвестные коэффициенты.
Для вычисления их положим х = 1 и х = — 3, тогда получим:
откуда а =7, в = 7.
Ответ: х 3 +7х 2 + 7х — 15.
Разложение многочлена на множители
Пример 6. Дан многочлен
Разложим его на множители, если известно, сто все его корни – целые числа.
Решение: Будем искать разложение в виде:
полагая числа a, b, c и d его корнями. Раскроем скобки в правой части и сгруппируем по одинаковым степеням.
Приравниваем коэффициенты при одинаковых степенях.
Так как корни нашего многочлена – целые, то из последнего уравнения системы заключаем, что они должны быть делителями числа 30. Следовательно, их следует искать среди чисел
Проведя испытания, установим, что корни нашего многочлена -2, -5, 1 и 3. Следовательно х 4 + 3х 3 — 15х 2 — 19х + 30 = (х — 1)(х — 3)(х + 2)(х + 5)
Пример 7. Дан многочлен .
Разложим его на множители, если известно, сто все его корни – целые числа.
Решение: Будем искать разложение в виде:
полагая числа a, b, c и d его корнями. Раскроем скобки в правой части и сгруппируем по одинаковым степеням.
Приравниваем коэффициенты при одинаковых степенях.
Так как корни нашего многочлена – целые, то из последнего уравнения системы заключаем, что они должны быть делителями числа 84. Следовательно, их следует искать среди чисел
Проведя испытания, установим, что корни нашего многочлена -7,-2,2,3. Следовательно х 4 + 4х 3 — 25х 2 — 16х + 84 = (х — 2)(х — 3)(х + 2)(х + 7)
Пример 8. Разность является целым числом. Найдем это число.
Решение: Так как,
Тогда
Положим где a и b – неизвестные коэффициенты.
Тогда
Решая данную систему уравнений, получим а = 5, b = -4.
Значит так как
Аналогично устанавливаем, что
Следовательно
Пример 9. Является ли разность целым числом.
Решение: Т.к.
тогда —
Положим где a и b – неизвестные коэффициенты.
Тогда откуда
из второго уравнения тогда первое уравнение принимает вид
b 2 = 12,5 — — не удовлетворяет условию задачи, или b 2 = 9, откуда b = -3 или b = 3 — не удовлетворяет числу Значит, а = 5.
Аналогично,
Окончательно получаем: — иррациональное число.
Уничтожение иррациональности в знаменателе
Пример 10. Избавимся от иррациональности в знаменателе:
Решение:
отсюда
Раскроем скобки, сгруппируем:
Ответ:
Пример 11. Избавимся от иррациональности в знаменателе:
Решение: ,
отсюда
Раскроем скобки, сгруппируем
Отсюда
Итак
Следовательно
Ответ:
Применение метода неопределенных коэффициентов при решении уравнений
Пример 12. Решим уравнение х 4 + х 3 — 4х 2 — 9х — 3 = 0.
Решение: Предположим, что корни уравнения — целые числа, тогда их надо искать среди чисел
Если х = 1, то
если х = -1, то
если х = 3, то
если х = -3, то
Отсюда делаем вывод, что рациональных корней наше уравнение не имеет.
Попробуем разложить многочлен на множители в следующем виде:
, где a, b, c и d – целые. Раскроем скобки:
Приравнивая соответствующие коэффициенты выражений для неизвестных a, b, c и d получаем систему уравнений:
Так как bd = -3, то будем искать решения среди вариантов:
Проверим вариант № 2, когда b = —1; d = 3:
Пример 13. Решить уравнение: х 4 — 15х 2 + 12х + 5= 0.
Решение: Разложим многочлен f(х) = х 4 — 15х 2 + 12х + 5 на множители в следующем виде: , где a, b, c и d -целые. Раскроем скобки:
Приравнивая соответствующие коэффициенты выражений для неизвестных a, b, c и d получаем систему уравнений:
Так как , bd = 5, то будем искать решения среди вариантов:
Системе удовлетворяет вариант №2, т.е. а = 3, b = -1, c = -3, d = 5.
Итак,
D =13
D = 29
Ответ:
О решении одного класса кубических уравнений.
Пусть дано кубическое уравнение: а 1 х 3 + b 1х 2 +с 1х +d1 = 0, где а ≠ 0.
Приведём его к виду х 3 + ах 2 +bх + с = 0 (1), где а = , в =
, с =
Положим в уравнении (1) х = у + m. Тогда получим уравнение:
Раскроем скобки, сгруппируем: y 3 +3у 2 m + 3ym 2 + m 3 + ay 2 + 2aym +am 2 + by +bm + с = 0,
y 3 + y 2 (a +3m) +y(3m 2 +2am +b) + m 3 +am 2 +bm + с = 0.
Для того, чтобы уравнение (1) было двучленным, должно выполняться условие:
Решения этой системы: m = —; a 2 = 3b. Таким образом, при произвольном с и при a 2 = 3b уравнение подстановкой х = у —
можно привести к двучленному уравнению третьей степени.
Пример14. Решить уравнение: х 3 + 3х 2 +3х — 9 =0.
Решение: В данном уравнении а = 3, в =3, тогда условие a 2 = 3b выполняется, а m = — = -1. Выполним подстановку х = у -1.
Уравнение принимает вид: (у -1) 3 +3(у -1) 2 +3(у -1) – 9 = 0.
y 3 -3y 2 +3у -1 +3у 2 – 6у +3 +3у –3 – 9 = 0.
y 3 – 10 = 0, откуда у = , а х =
— 1.
Ответ: — 1.
Пример15. Решить уравнение: х 3 + 6х 2 + 12х + 5 = 0.
Решение: а = 6, в =12, тогда условие a 2 = 3b (62 = 3×12) выполняется, а m = — = -2.
Выполним подстановку х = у — 2. Уравнение принимает вид: (у -2) 3 +6(у -2) 2 +12(у -2) + 5 = 0.
у 3 – 6у 2 + 12у – 8 + 6у 2 -24у + 24 + 12у – 24 + 5 = 0.
у 3 – 3 = 0, у = , а х =
— 2.
Ответ: – 2.
Рассмотренные в работе примеры могут быть решены и другими способами. Но цель работы заключалась в том, чтобы решить их методом неопределённых коэффициентов, показать универсальность этого метода, его оригинальность и рациональность, не отрицая того, что в некоторых случаях он приводит к громоздким, но не сложным преобразованиям.
Источник