Способ нахождения натуральных чисел

Содержание
  1. Натуральные числа. Ряд натуральных чисел.
  2. Натуральный ряд.
  3. Алгоритмы нахождения простых чисел
  4. Задача 1. Определение простого числа.
  5. Задача 2. Нахождение простых чисел в заданном интервале.
  6. Задача 3. Поиск пар чисел близнецов.
  7. Задача 4. Нахождение простых чисел в заданном интервале с выводом в выходной файл.
  8. Задача 5. Приемы оптимизации алгоритма задачи 4.
  9. Задача 6. Нахождение простых чисел с помощью решета Эратосфена.
  10. Натуральные числа
  11. Натуральные числа: определение, операции, свойства
  12. Определение
  13. Последовательность натуральных чисел
  14. Классы натуральных чисел
  15. Сложение натуральных чисел
  16. Вычитание натуральных чисел
  17. Произведение натуральных чисел
  18. Деление натуральных чисел
  19. Простые и составные натуральные числа
  20. Делители натуральных чисел
  21. Делимость натуральных чисел
  22. Наименьшее общее кратное
  23. Среднее арифметическое

Натуральные числа. Ряд натуральных чисел.

История натуральных чисел началась ещё в первобытные времена. Издревле люди считали предметы. Например, в торговле нужен был счет товара или в строительстве счет материала. Да даже в быту тоже приходилось считать вещи, продукты, скот. Сначала числа использовались только для подсчета в жизни, на практике, но в дальнейшем при развитии математики стали частью науки.

Натуральные числа – это числа которые мы используем при счете предметов.

Например: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ….

Нуль не относится к натуральным числам.

Все натуральные числа или назовем множество натуральных чисел обозначается символом N.

Таблица натуральных чисел.

Натуральный ряд.

Натуральные числа, записанные подряд в порядке возрастания, образуют натуральный ряд или ряд натуральных чисел.

Свойства натурального ряда:

  • Наименьшее натуральное число – единица.
  • У натурального ряда следующее число больше предыдущего на единицу. (1, 2, 3, …) Три точки или троеточие ставятся в том случае, если закончить последовательность чисел невозможно.
  • Натуральный ряд не имеет наибольшего числа, он бесконечен.

Пример №1:
Напишите первых 5 натуральных числа.
Решение:
Натуральные числа начинаются с единицы.
1, 2, 3, 4, 5

Пример №2:
Нуль является натуральным числом?
Ответ: нет.

Пример №3:
Какое первое число в натуральном ряду?
Ответ: натуральный ряд начинается с единицы.

Пример №4:
Какое последнее число в натуральном ряде? Назовите самое большое натуральное число?
Ответ: Натуральный ряд начинается с единицы. Каждое следующее число больше предыдущего на единицу, поэтому последнего числа не существует. Самого большого числа нет.

Пример №5:
У единицы в натуральном ряду есть предыдущее число?
Ответ: нет, потому что единица является первым числом в натуральном ряду.

Пример №6:
Назовите следующее число в натуральном ряду за числами: а)5, б)67, в)9998.
Ответ: а)6, б)68, в)9999.

Пример №7:
Сколько чисел находится в натуральном ряду между числами: а)1 и 5, б)14 и 19.
Решение:
а) 1, 2, 3, 4, 5 – три числа находятся между числами 1 и 5.
б) 14, 15, 16, 17, 18, 19 – четыре числа находятся между числами 14 и 19.

Пример №8:
Назовите предыдущее число за числом 11.
Ответ: 10.

Пример №9:
Какие числа применяются при счете предметов?
Ответ: натуральные числа.

Источник

Алгоритмы нахождения простых чисел

Простые числа – это натуральные числа, большие единицы, которые имеют только два делителя: единицу и само это число.

Примеры простых чисел: 2 , 3, 5, 7, 11, 13…

(Единица не является простым числом!)

Существует множество задач, связанных с простыми числами, и хотя формулируются они достаточно просто, решить их бывает очень трудно. Некоторые свойства простых чисел еще не открыты. Это побудило немецкого математика Германа Вейля (Wayl, 1885-1955) так охарактеризовать простые числа: «Простые числа – это такие существа, которые всегда склонны прятаться от исследователя».

Во все времена люди хотели найти как можно большее простое число. Пока люди считали только при помощи карандаша и бумаги, им нечасто удавалось обнаружить новые простые числа. До 1952 г. самое большое известное простое число состояло из 39 цифр. Теперь поиском все больших простых чисел занимаются компьютеры. Это может представлять интерес для любителей рекордов.

Не будем гнаться за рекордами, а рассмотрим несколько алгоритмов нахождения простых чисел.

Задача 1. Определение простого числа.

Составить программу, которая будет проверять, является ли введенное число простым.

Самый простой путь решения этой задачи – проверить, имеет ли данное число n (n >= 2) делители в интервале [2; n-1]. Если делители есть, число n – составное, если – нет, то – простое. При реализации алгоритма разумно делать проверку на четность введенного числа, поскольку все четные числа делятся на 2 и являются составными числами, то, очевидно, что нет необходимости искать делители для этих чисел. Логическая переменная flag в программе выступает в роли “флаговой” переменной и повышает наглядность программы, так, если flag = true, то n –простое число; если у числа n есть делители, то “флаг выключаем” с помощью оператора присваивания flag:= false, таким образом, если flag = false, то n – составное число.

Задача 2. Нахождение простых чисел в заданном интервале.

Составить программу, которая напечатает все простые числа в заданном интервале [2, m], для m>3 и подсчитает их количество.

Для реализации данного алгоритма необходимо проверить каждое число, находящееся в данном интервале, — простое оно или нет. Однако для этого машине пришлось бы потратить много времени. Поэтому подумаем, каким образом можно оптимизировать алгоритм, описанный в задаче 1, применительно к задаче 2?

Будем использовать следующие приемы оптимизации алгоритма:

  1. рассматривать только нечетные числа;
  2. использовать свойство: наименьшее число, на которое делится натуральное число n, не превышает целой части квадратного корня из числа n;
  3. прерывать работу цикла, реализующего поиск делителей числа, при нахождении первого же делителя с помощью процедуры Break, которая реализует немедленный выход из цикла и передает управление оператору, стоящему сразу за оператором цикла.
Читайте также:  Цепной способ развития информации это

Как правило, учащиеся сами догадываются о приемах №1 и №3, но не всегда знают, как реализовать в программе досрочное завершение цикла, прием же №2 для них не очевиден, поэтому, возможно, учителю следует остановиться на нем более подробно или же привести полное доказательство этого утверждения.

Счетчик чисел будет находиться в переменной k. Когда очередное простое число найдено, он увеличивается на 1. Простые числа выводятся по 10 в строке, как только значение счетчика становится кратным 10, курсор переводится на новую строку.

Близнецы

Два нечетных простых числа, разнящихся на два, называются близнецами. Близнецами являются, например, числа 5 и 7, 11 и 13, 17 и 19 и т.д. В начале натурального ряда такие пары чисел встречаются достаточно часто, но, по мере того как мы продвигаемся в область больших чисел, их становится все меньше и меньше. Известно, что в первой сотне имеется целых 8 близнецов, дальше они расположены очень неравномерно, их можно обнаружить все реже и реже, гораздо реже, нежели сами простые числа. До сих пор неясно, конечно ли число близнецов. Более того, еще не найден способ, посредством которого можно было бы разрешить эту проблему.

Задача 3. Поиск пар чисел близнецов.

Написать программу, которая будет находить все числа близнецы в интервале [2; 1000] и подсчитывать количество пар чисел близнецов.

Фактически будем использовать алгоритм и программу Задачи 2. В этом алгоритме нужно использовать дополнительные переменные для хранения двух “последних” простых чисел и проверять условие наличия близнецов – их разность должна быть равна двум.

Задача 4. Нахождение простых чисел в заданном интервале с выводом в выходной файл.

Реализовать алгоритм задачи 2 с выводом простых чисел в выходной файл по 10 в строке. Последняя строка файла должна содержать информацию о количестве простых чисел в заданном интервале.

Задача 5. Приемы оптимизации алгоритма задачи 4.

Оптимизировать алгоритм задачи 4 следующим образом: найденные простые числа записывать в файл, делимость очередного кандидата проверять только на числа из этого файла.

Словесное описание алгоритма:

  1. Вводим правую границу диапазона – m;
  2. Записываем двойку и тройку в файл;
  3. Пока очередное нечетное число i m ), вывести в файл количество простых чисел.

Эратосфеново решето

Греческий математик Эратосфен (275-194 гг. до н.э.) предложил интересный метод нахождения простых чисел в интервале [2; n]. Он написал на папирусе, натянутом на рамку, все числа от 2 до 10000 и прокалывал составные числа. Папирус стал, как решето, которое “просеивает” составные числа, а простые оставляет. Поэтому такой метод называется Эратосфеновым решетом. Рассмотрим подробнее этот метод.

Пусть написаны числа от 2 до n:

Первое неперечеркнутое число в строке является простым. Таким образом, 2 – простое число. Начинаем “просеивание” с него, перечеркивая все числа, которые делятся на 2:

Далее берем следующее по порядку неперечеркнутое число и перечеркиваем все числа, кратные ему и т. д. Таким образом, мы перечеркнем все составные числа, а простые останутся неперечеркнутыми:

Все числа указанного интервала можно рассматривать как множество и в дальнейшем из этого множества будем исключать (отсеивать) все составные числа.

Задача 6. Нахождение простых чисел с помощью решета Эратосфена.

Реализовать алгоритм решета Эратосфена с помощью организации работы с множествами.

Словесное описание алгоритма:

  1. Выделим из первых n натуральных чисел все простые числа (решето Эратосфена).
  2. Вначале формируем множество BeginSet, состоящее из всех целых чисел в диапазоне от 2 до n. Множество PrimerSet будет содержать искомые простые числа.
  3. Затем циклически повторим действия:
    1. взять из BeginSet первое входящее в него число next и поместить его в PrimerSet;
    2. удалить из BeginSet число next и все другие числа, кратные ему, т. е. 2* next, 3* next и т. д.

Цикл повторяется до тех пор, пока множество BeginSet не станет пустым. Программу нельзя использовать для произвольного n, т. к. в любом множестве не может быть больше 256 элементов. (Для расширения интервала простых чисел можно разбить одно большое множество на несколько маленьких, т. е. представить большое множество в виде массива малых множеств. Этот случай рассматривать не будем. Можно предложить наиболее заинтересованным учащимся самостоятельно рассмотреть этот вариант.)

Литература:

  1. Е.В. Андреева Методика обучения основам программирования на уроках информатики. Лекции 1-8. – М.: Педагогический университет «Первое сентября», 2006.
  2. В.А. Дагене, Г.К. Григас, А.Ф. Аугутис 100 задач по программированию. – М.: Просвещение, 1993. — 255 с.
  3. В.В. Фаронов Турбо Паскаль 7.0. Начальный курс. Учебное пособие. – М.: «Нолидж», 1999. — 616 с.

Источник

Натуральные числа

Натуральные числа: определение, операции, свойства

Определение

Натуральными числами называются числа, предназначенные для счета предметов. Для записи натуральных чисел используются 10 арабских цифр (0–9), положенных в основание общепринятой для математических расчетов десятичной системы счисления.

Последовательность натуральных чисел

Натуральные числа составляют ряд, начинающийся с 1 и охватывающий множество всех положительных целых чисел. Такая последовательность состоит из чисел 1,2,3, … . Это означает, что в натуральном ряду:

  1. Есть наименьшее число и нет наибольшего.
  2. Каждое следующее число больше предыдущего на 1 (исключение – сама единица).
  3. При стремлении к бесконечности числа растут неограниченно.

Иногда в ряд натуральных чисел вводят и 0. Это допустимо, и тогда говорят о расширенном натуральном ряде.

Классы натуральных чисел

Каждая цифра натурального числа выражает определенный разряд. Самая последняя – это всегда количество единиц в числе, предыдущая перед ней – количество десятков, третья от конца – количество сотен, четвертая – количество тысяч и так далее.

  • в числе 276: 2 сотни, 7 десятков, 6 единиц
  • в числе 1098: 1 тысяча, 9 десятков, 8 единиц; разряд сотен здесь отсутствует, поскольку выражен нулем.
Читайте также:  Способы соединения металлопластиковых труб фитингами

Для больших и очень больших чисел можно увидеть устойчивую тенденцию (если исследовать число справа налево, то есть от последней цифры к первой):

  • три последних цифры в числе – это единицы, десятки и сотни;
  • три предыдущие – это единицы, десятки и сотни тысяч;
  • три стоящие перед ними (т.е.7-я, 8-я и 9-я цифры числа, считая от конца) – это единицы, десятки и сотни миллионов и т.д.

То есть всякий раз мы имеем дело с тремя цифрами, означающими единицы, десятки и сотни более крупного наименования. Такие группы формируют классы. И если с первыми тремя классами в повседневной жизни приходится иметь дело более или менее часто, то другие следует перечислить, потому что далеко не все помнят наизусть их названия.

  • 4-й класс, следующий за классом миллионов и представляющий собой числа из 10-12 цифр, называется миллиард (либо биллион);
  • 5-й класс – триллион;
  • 6-й класс – квадриллион;
  • 7-й класс – квинтиллион;
  • 8-й класс – секстиллион;
  • 9-й класс – септиллион.

Сложение натуральных чисел

Сложение натур.чисел представляет собой арифметическое действие, позволяющее получить число, в котором содержится столько же единиц, сколько имеется в складываемых числах вместе.

Знаком сложения является знак «+». Складываемые числа называются слагаемыми, получаемый результат – суммой.

Небольшие числа складывают (суммируют) устно, письменно такие действия записывают в строку.

Многозначные числа, которые прибавлять в уме затруднительно, принято складывать в столбик . Для этого числа записывают одно под другим, выравнивая по последней цифре, то есть пишут разряд единиц под разрядом единиц, разряд сотен под разрядом сотен и так далее. Далее нужно попарно сложить разряды. Если сложение разрядов происходит с переходом через десяток, то этот десяток фиксируется как единица над разрядом слева (то есть следующим за ним) и суммируется вместе с цифрами этого разряда.

Если в столбик складывается не 2, а больше чисел, то при суммировании цифр разряда избыточным может оказаться не 1 десяток, а несколько. В этом случае на следующий разряд переносится количество таких десятков.

Вычитание натуральных чисел

Вычитание – это арифметическое действие, обратное сложению, которое сводится к тому, что по имеющейся сумме и одному из слагаемых нужно найти другое – неизвестное слагаемое. Число, из которого вычитают, называется уменьшаемым; число, которое вычитают, – вычитаемым. Результат вычитания называют разностью. Знак, которым обозначают действие вычитания, является «–».

При переходе к сложению вычитаемое и разность превращаются в слагаемые, а уменьшаемое – в сумму. Сложением обычно проверяют правильность выполненного вычитания, и наоборот.

Здесь 74 – уменьшаемое, 18 – вычитаемое, 56 – разность.

Обязательным условием при вычитании натуральных чисел является следующее: уменьшаемое обязательно должно быть больше вычитаемого. Только в этом случае полученная разность тоже будет натуральным числом. Если действие вычитания осуществляется для расширенного натурального ряда, то допускается, чтобы уменьшаемое было равно вычитаемому. И результатом вычитания в этом случае будет 0.

Примечание: если нулю равно вычитаемое, то операция вычитания не изменяет величины уменьшаемого.

Вычитание многозначных чисел обычно производят в столбик. Записывают при этом числа так же, как и для сложения. Вычитание выполняется для соответствующих разрядов. Если же оказывается, что уменьшаемое меньше вычитаемого, то берут единицу из предыдущего (находящегося слева) разряда, которая после переноса, естественно, превращается в 10. Эту десятку суммируют с цифрой уменьшаемого данного разряда и после этого производят вычитание. Далее при вычитании следующего разряда обязательно учитывают, что уменьшаемое стало на 1 меньше.

Произведение натуральных чисел

Произведение (или умножение) натуральных чисел – это арифметическое действие, представляющее собой нахождение суммы произвольного количества одинаковых слагаемых. Для записи действия умножения используют знак «·» (иногда «×» или «*»). Например: 3·5=15.

Действие умножение незаменимо при необходимости складывать большое количество слагаемых. Например, если нужно число 4 прибавить 7 раз, то перемножить 4 на 7 проще, нежели выполнять такое сложение: 4+4+4+4+4+4+4.

Числа, которые перемножают, называются множителями, результат умножения – произведением. Соответственно, термин «произведение» может в зависимости от контекста выражать собой как процесс умножения, так и его результат.

Многозначные числа перемножают в столбик. Для этого числа записывают так же, как и для сложения и вычитания. Рекомендуется первым (выше) записывать то из 2-х чисел, которое длиннее. В этом случае процесс умножения будет более простым, а следовательно, более рациональным.

При умножении в столбик выполняют последовательное умножение цифры каждого из разрядов второго числа на цифры 1-го числа, начиная с его конца. Найдя первое такое произведение, записывают цифру единиц, а цифру десятков держат в уме. При умножения цифры 2-го числа на следующую цифру 1-го числа к произведению прибавляют ту цифру, которую держат в уме. И снова записывают цифру единиц полученного результата, а цифру десятков запоминают. При умножении на последнюю цифру 1-го числа полученное таким способом число записывают полностью.

Результаты умножения цифры 2-го разряда второго числа записывают вторым рядом, сместив его на 1 клетку вправо. И так далее. В итоге будет получена «лесенка». Все получившиеся ряды цифр следует сложить (по правилу сложения в столбик). Пустые клетки при этом нужно считать заполненными нулями. Полученная сумма и есть конечное произведение.

Примечание
  1. Произведение любого натур.числа на 1 (или 1 на число) равно самому числу. Например: 376·1=376; 1·86=86.
  2. Когда один из множителей либо оба множителя равны 0, то и произведение равно 0. Например: 32·0=0; 0·845=845; 0·0=0.

Деление натуральных чисел

Делением называют арифметическое действие, с помощью которого по известному произведению и одному из множителей может быть найдет другой – неизвестный – множитель. Деление является действием, обратным умножению, и используется для проверки правильности выполненного умножения (и наоборот).

Число, которое делят, называют делимым; число, на которое делят, – делителем; результат деления называется частным. Знаком деления является «:» (иногда, реже – «÷»).

Читайте также:  Способы защиты от лэп

Здесь 48 – делимое, 6 – делитель, 8 – частное.

Не все натуральные числа можно поделить между собой. В этом случае выполняют деление с остатком. Заключается оно в том, что для делителя подбирается такой множитель, чтобы его произведение на делитель было бы числом, максимально близким по значению к делимому, но меньшим него. Делитель умножают на этот множитель и вычитают его из делимого. Разность и будет остатком от деления. Произведение делителя на множитель называют неполным частным. Внимание: остаток обязательно должен быть меньше подобранного множителя! Если остаток больше, то это означает, что множитель подобран неверно, и его следует увеличить.

Подбираем множитель для 7. В данном случае это число 5. Находим неполное частное: 7·5=35. Вычисляем остаток: 38-35=3. Поскольку 3 x ,

где a – перемножаемое само на себя число, x – количество таких множителей.

Простые и составные натуральные числа

Всякое натуральное число, кроме 1, можно разделить как минимум на 2 числа – на единицу и на само себя. Исходя из этого критерия, натуральные числа разделяют на простые и составные.

Простыми считаются числа, которые делятся только на 1 и на само себя. Числа, которые делятся более чем на эти 2 числа, называют составными. Единица, делящаяся исключительно на саму себя, не относится ни к простым, ни к составным.

Простыми являются числа: 2,3,5,7,11,13,17,19 и т.д. Примеры составных чисел: 4 (делится на 1,2,4), 6 (делится на 1,2,3,6), 20 (делится на 1,2,4,5,10,20).

Всякое составное число можно разложить на простые множители. Под простыми множителями при этом понимаются его делители, являющиеся простыми числами.

Пример разложения на простые множители:

Делители натуральных чисел

Под делителем понимают число, на которое можно без остатка разделить данное число.

В соответствии с этим определением, простые натур.числа имеют 2 делителя, составные – больше 2 делителей.

Многие числа имеют общие делители. Общим делителем называется число, на которое данные числа делятся без остатка.

Примеры:

  • У чисел 12 и 15 общий делитель 3
  • У чисел 20 и 30 общие делители 2,5,10

Особое значение имеет наибольший общий делитель (НОД). Это число, в частности, полезно уметь находить для сокращения дробей. Для его нахождения требуется разложить данные числа на простые множители и представить его как произведение их общих простых множителей, взятых в наименьших своих степенях.

Требуется найти НОД чисел 36 и 48.

Делимость натуральных чисел

Далеко не всегда представляется возможным «на глазок» определить, делится ли одно число на другое без остатка. В таких случаях полезным оказывается соответствующий признак делимости, то есть правило, по которому за считанные секунды можно определить, можно ли разделить числа без остатка. Для обозначения делимости используется знак «».

  1. Признак делимости на 2 или 5. На 2 или 5 делятся числа, у которых последняя цифра является числом, делящимся соответственно на 2 или 5. Примеры: 4928 делится на 2; 1365 делится на 5; 1220 делится и на 2, и на 5.
  2. Признак делимости на 3 или 9. На эти числа делятся числа, сумма цифр которых формирует число, делящееся соответственно на 3 или 9. Примеры: 831 ( ) делится на 3; 1422 ( ) делится на 9; 3942 (3+9+4+2=18) делится и на 3, и на 9.
  3. Признак делимости на 4 или 25. Эти числа являются делителями для тех чисел, у которых последние две цифры нули или представляют собой число соответственно делящееся на 4 или на 25. Примеры: 1300 делится и на 4, и на 25; 35616 делится на 4; 8650 делится на 25.
  4. Признак делимости на 8 или 125. Этот признак подобен предыдущему с тем отличием, что 3 последние цифры делимого числа должны быть нулями либо представлять собой число, делящееся соответственно на 8 либо 125. Примеры: 64250 делится на 125; 15048 делится на 8; 192500 делится на 8, и на 125.
  5. Признак делимости на 10. На 10 делятся числа, оканчивающиеся 0.
  6. Признак делимости на 7 или 11 или 13. На 7,11,13 делятся числа, у которых разность между числом, выраженным 3-мя последними цифрами, и числом, состоящим из всех остальных цифр (или наоборот), без изменения порядка записи цифр, делится соответственно на 7 или 11 или 13. Примеры: 49105 ( ) делится на 7; 82104 ( ) делится на 11; 284245 ( ) делится на 13.

Наименьшее общее кратное

Эта величина (обозначается НОК) представляет собой наименьшее число, которое делится на каждое из заданных. НОК может быть найден для произвольного набора натуральных чисел.

НОК, как и НОД, имеет значительный прикладной смысл. Так, именно НОК нужно находить, приводя обыкновенные дроби к общему знаменателю.

НОК определяется путем разложения заданных чисел на простые множители. Для его формирования берется произведение, состоящее из каждого из встречающихся (хотя бы для 1 числа) простых множителей, представленных в максимальной степени.

Требуется найти НОК чисел 14 и 24.

Среднее арифметическое

Средним арифметических произвольного (но конечного) количества натуральных чисел является сумма всех этих чисел, разделенная на количество слагаемых:

Среднее арифметическое представляет собой некоторое усредненное значение для числового множества.

Даны числа 2,84,53,176,17,28. Требуется найти их среднее арифметическое.

Источник

Оцените статью
Разные способы