- Способ нахождения натуральной величины сечения
- Способ нахождения натуральной величины сечения
- Определение натуральной величины фигуры сечения
- Задание 3. Многогранники
- 4.1. Краткие теоретические сведения
- 4.2. Способ перемены плоскостей проекций
- 4.3. Развертывание поверхностей
- 4.4. Задание 3. Построение натурального вида сечения пирамиды плоскостью
- 4.4.1. Условие задания
- 4.4.2. Рекомендации по выполнению задания № 2
- Видеопример выполнения задания №3
- 4.5. Варианты задания 3
Способ нахождения натуральной величины сечения
Контрольные задания по теме:
Рабочая тетрадь задача 68, задача 69
Цилиндром будет называться геометрическое тело, полученное при ограничении цилиндрической поверхности двумя параллельными плоскостями — основаниями цилиндра. Если в основании цилиндра лежит окружность, а образующая перпендикулярна основанию, то цилиндр называется прямым круговым.
Линия сечения строится также при помощи опорных точек — точек пересечения секущей плоскости с очерковыми образующими и осью цилиндра. Но необходимо взять также промежуточные точки для более точного построения линии сечения. На рисунке 49 показано построение проекций сечения цилиндра фронтально — проецирующей плоскостью S. Так как цилиндр является проецирующей поверхностью, то горизонтальная проекция сечения совпадает с секущей плоскостью и на профильной проекции получим эллипс. Точки 2 и 3 будут являться границей видимости линии сечения для профильной плоскости.
Натуральную величину сечения можно определить способом вращения. Ось вращения выбираем в точке 1 и вращаем секущую плоскость до положения, параллельного горизонтальной плоскости. На горизонтальной плоскости получим эллипс, который будет являться натуральной величиной сечения цилиндра.
Рисунок 49
Разверткой цилиндра является прямоугольник с высотой, равной высоте цилиндра, и длиной, равной длине окружности основания 2πR. Для того, чтобы построить развертку усеченной части, основание цилиндра делят на равные части, тем самым аппроксимируя цилиндрическую поверхность призматической. Разделим окружность основания на 12 равных частей и отложим их вдоль горизонтальной линии развертки, по вертикали отложим высоту цилиндра (рис. 50).
Затем на полученных образующих отметим высоты точек сечения. Пристроим окружность основания и натуральную величину сечения.
Рисунок 50
Конус — это геометрическое тело, полученное путем ограничения конической поверхности плоскостью. Если в основании конуса лежит окружность, а высота попадает в центр основания, то конус называется прямым круговым.
На рисунке 51 построено сечение конуса фронтально — проецирующей плоскостью. Точки сечения находим при помощи вспомогательных секущих плоскостей. Точки С и D являются границей видимости для профильной проекции сечения.
Натуральную величину сечения находим способом вращения. Ось вращения выбираем в точке D и поворачиваем секущую плоскость до положения, параллельного горизонтальной плоскости проекций. Из горизонтальных проекций точек проводим линии, перпендикулярные оси вращения. Натуральной величиной сечения будет являться эллипс.
Рисунок 51
Развертка конуса является круговым сектором с радиусом, равным длине образующей конуса и длиной дуги, равной длине окружности основания конуса. Делим основание конуса на 12 равных частей и откладываем их по дуге на развертке. Затем на соответствующих образующих нужно отложить натуральные величины высот точек сечения. Чтобы получить полную развертку усеченной части, пристраиваем основание и натуральную величину сечения. На рисунке 52 показано построение развертки конуса.
Рисунок 52
1. Как образуется цилиндрическая поверхность?
2. Если секущая цилиндр плоскость фронтально проецирующая, то где будут лежать горизонтальные проекции точек сечения?
3. Какими способами можно определять натуральную величину фигуры сечения?
4. Какой геометрической фигурой является развертка боковой поверхности цилиндра? Конуса?
5. Для чего нужно разбивать окружность основания на некоторое количество равных частей?
6. Как построить развертку конической поверхности?
7. Как получить из полной развертки поверхности развертку ее усеченной части?
© ФГБОУ ВПО Красноярский государственный аграрный университет
Источник
Способ нахождения натуральной величины сечения
Контрольные задания по теме:
Рабочая тетрадь задача 68, задача 69
Цилиндром будет называться геометрическое тело, полученное при ограничении цилиндрической поверхности двумя параллельными плоскостями — основаниями цилиндра. Если в основании цилиндра лежит окружность, а образующая перпендикулярна основанию, то цилиндр называется прямым круговым.
Линия сечения строится также при помощи опорных точек — точек пересечения секущей плоскости с очерковыми образующими и осью цилиндра. Но необходимо взять также промежуточные точки для более точного построения линии сечения. На рисунке 49 показано построение проекций сечения цилиндра фронтально — проецирующей плоскостью S. Так как цилиндр является проецирующей поверхностью, то горизонтальная проекция сечения совпадает с секущей плоскостью и на профильной проекции получим эллипс. Точки 2 и 3 будут являться границей видимости линии сечения для профильной плоскости.
Натуральную величину сечения можно определить способом вращения. Ось вращения выбираем в точке 1 и вращаем секущую плоскость до положения, параллельного горизонтальной плоскости. На горизонтальной плоскости получим эллипс, который будет являться натуральной величиной сечения цилиндра.
Рисунок 49
Разверткой цилиндра является прямоугольник с высотой, равной высоте цилиндра, и длиной, равной длине окружности основания 2πR. Для того, чтобы построить развертку усеченной части, основание цилиндра делят на равные части, тем самым аппроксимируя цилиндрическую поверхность призматической. Разделим окружность основания на 12 равных частей и отложим их вдоль горизонтальной линии развертки, по вертикали отложим высоту цилиндра (рис. 50).
Затем на полученных образующих отметим высоты точек сечения. Пристроим окружность основания и натуральную величину сечения.
Рисунок 50
Конус — это геометрическое тело, полученное путем ограничения конической поверхности плоскостью. Если в основании конуса лежит окружность, а высота попадает в центр основания, то конус называется прямым круговым.
На рисунке 51 построено сечение конуса фронтально — проецирующей плоскостью. Точки сечения находим при помощи вспомогательных секущих плоскостей. Точки С и D являются границей видимости для профильной проекции сечения.
Натуральную величину сечения находим способом вращения. Ось вращения выбираем в точке D и поворачиваем секущую плоскость до положения, параллельного горизонтальной плоскости проекций. Из горизонтальных проекций точек проводим линии, перпендикулярные оси вращения. Натуральной величиной сечения будет являться эллипс.
Рисунок 51
Развертка конуса является круговым сектором с радиусом, равным длине образующей конуса и длиной дуги, равной длине окружности основания конуса. Делим основание конуса на 12 равных частей и откладываем их по дуге на развертке. Затем на соответствующих образующих нужно отложить натуральные величины высот точек сечения. Чтобы получить полную развертку усеченной части, пристраиваем основание и натуральную величину сечения. На рисунке 52 показано построение развертки конуса.
Рисунок 52
1. Как образуется цилиндрическая поверхность?
2. Если секущая цилиндр плоскость фронтально проецирующая, то где будут лежать горизонтальные проекции точек сечения?
3. Какими способами можно определять натуральную величину фигуры сечения?
4. Какой геометрической фигурой является развертка боковой поверхности цилиндра? Конуса?
5. Для чего нужно разбивать окружность основания на некоторое количество равных частей?
6. Как построить развертку конической поверхности?
7. Как получить из полной развертки поверхности развертку ее усеченной части?
© ФГБОУ ВПО Красноярский государственный аграрный университет
Источник
Определение натуральной величины фигуры сечения
Нередко практический интерес представляет задача определения натуральной величины фигуры сечения.
Определим натуральную величину сечения (четырехугольника), полученного на рис. 3.11. Так как четырехугольник 1234 занимает общее положение в пространстве, то его натуральную величину можно определить двумя переменами плоскостей проекций, сначала построив плоскость, перпендикулярную четырехугольнику 1234, а затем – параллельную ему. Чтобы не загромождать чертеж (рис. 3.11), вынесем построения на отдельный рисунок 3.12. Для построения плоскости, перпендикулярной плоскости четырехугольника 1234, необходимо начертить одну из главных линий, например, горизонталь. Ее фронтальная проекция h2 должна быть параллельна оси П1/П2. По точкам пересечения 2 и 4 с четырехугольником 1234 находим и горизонтальную проекцию h1 горизонтали.
Новая ось П4/П1, разделяющая П1 и новую плоскость П4, должна быть перпендикулярна h1. Затем получаем проекцию 14243444 в виде прямой. И наконец, вычертив вторую новую ось П5/П4, параллельно 1434, построим проекцию 15253545 четырехугольника в плоскости П5. Это и есть натуральная величина четырехугольника 1234. Сечение заштрихуем под углом 45° к горизонтальной прямой.
Чаще приходится решать более простую задачу – определение натуральной величины сечения многогранника плоскостью частного положения. В этом случае достаточно сделать всего одну замену плоскостей проекций. Рассмотрим на примере сечения пирамиды горизонтально–проецирующей плоскостью S (рис 3.13). Пусть задана горизонтальная проекция S1. Необходимо найти линию пересечения плоскости S с пирамидой и определить натуральную величину сечения. Таким образом, задача разбивается на две части: сначала надо построить сечение в плоскостях П1и П2, а затем определить его натуральную величину.
Рис. 3.13. Построение линии пересечения и определение натуральной величины сечения пирамиды плоскостью.
Чтобы решить первую часть задачи нужно найти все точки пересечения плоскости S с ребрами пирамиды и соединить их отрезками прямой. Горизонтальная проекция S1 пересекает ребра пирамиды в точках 11, 21, 31, 41 (рис. 3.13, а). По линиям связи находим их фронтальные проекции 12, 22, 32, 42 на фронтальных проекциях соответствующих ребер. Соединяя найденные точки, получаем линию пересечения 12223242 заданной плоскости с пирамидой. Отрезок 1242 этой линии будет невидимым, так как он лежит на невидимой грани A2S2C2. Плоская фигура, ограниченная полученной линией (на рис. 5.9, а заштрихована), и является сечением пирамиды плоскостью. В нашем примере это четырехугольник 1234.
Для определения натуральной величины четырехугольника 1234 способом замены плоскостей проекций не обязательно строить новую ось параллельно S1 (или 11214131), ввиду ограниченности площади чертежа. Достаточно соблюдать основные принципы построения. Начертим новую ось на свободном поле чертежа. Перенесем на нее точки 11,21,41,31, не меняя расстояния между ними. Проведем через них перпендикуляры к оси. Затем отложим на построенных перпендикулярах отрезки, равные расстояниям от оси П2/П1, которую считаем расположенной на основании А2В2С2 пирамиды, до соответствующих проекций 12, 22, 42, 32. Соединив указанные точки, получим натуральную величину сечения пирамиды заданной плоскостью S (рис. 3.13, б).
Как видим, сечение в натуральную величину отличается от 12223242 лишь тем, что оно вытянуто вдоль S1.
Источник
Задание 3. Многогранники
4.1. Краткие теоретические сведения
Многогранниками называются тела, ограниченные плоскими n-угольниками, которые называются гранями . Линии пересечения граней называются ребрами , точки пересечения ребер – вершинами. Для всех многогранников справедлива формула Эйлера: сумма граней и вершин за минусом числа ребер есть величина постоянная: Г + В – Р = 2.
Наиболее распространенными в технике многогранниками являются правильные и неправильные, прямые и наклонные призмы и пирамиды. Призмой называется многогранник, в основании которого находится плоский n-угольник, а остальные грани являются в общем случае параллелограммами. Пирамидой называется многогранник, в основании которого находится плоский n-угольник, а боковыми гранями являются треугольники с общей вершиной. На эпюре многогранники задаются проекциями ребер, так называемой сеткой ребер .
Типовой задачей для многогранников является задача о пересечении многогранников плоскостями частного и общего положения. Для построения фигуры сечения многогранника плоскостью используют следующие приемы:
-
- определение каждой вершины сечения, как точки пересечения ребер многогранника с секущей плоскостью ( способ ребер );
- построение стороны сечения, как линии пересечения с секущей плоскостью граней многогранника ( способ граней ).
Чаще применяется первый из заданных приемов, второй же целесообразно применять в тех случаях, когда грани многогранника являются проецирующими плоскостями, линии пересечения которых с секущей плоскостью общего положения строятся очень просто.
а б
Рисунок 4.1 – Пересечение пирамиды плоскостью (а — задание, б — результат)
В методе ребер несколько раз (по числу пересекаемых ребер) решается задача о пересечении прямой (ребра) с плоскостью (секущей плоскостью). В этом случае находятся точки 1, 2, 3 (рис. 4.1). Найденные точки являются вершинами сечения пирамиды плоскостью.
В методе граней несколько раз решается типовая задача о пересечении двух плоскостей (граней многогранника и секущей плоскости), в которой находят линии 1-2, 2-3, 3-1, являющиеся сторонами многоугольника (в данном примере, треугольника сечения). Если секущая плоскость является плоскостью частного положения, то задача решается упрощенно.
4.2. Способ перемены плоскостей проекций
Сущность способа перемены плоскостей проекций заключается в том, что положение геометрических элементов (точек, прямых, фигур, тел) в пространстве остается неизменным, а система плоскостей проекций заменяется новой, по отношению к которой эти элементы занимают положение, наиболее удобное для решения той или иной задачи.
В ряде случаев для решения задачи бывает достаточно заменить новой плоскостью одну из основных плоскостей проекций – фронтальную или горизонтальную. В других же случаях замена лишь одной плоскости проекций вопроса не разрешает и бывает необходимо последовательно заменить новыми плоскостями обе основные плоскости проекций.
При замене основной плоскости проекций новой плоскостью эта последняя должна располагаться по отношению к остающейся основной плоскости проекций перпендикулярно.
Рассмотрим способ перемены плоскостей проекций на примерах.
Для того чтобы данная прямая общего положения m=АВ оказалась линией уровня, следует ввести новую плоскость проекций π4, которая была бы ей параллельна (рис. 4.2 и 4.3).
Рисунок 4.2 Рисунок 4.3
На Рисунке 4.2 введена плоскость π4, параллельная прямой m и перпендикулярная к плоскости π1; по новым линиям связи от оси π1/π4 откладываем расстояния от точек А и В до плоскости π1 (отмеченное штрихом и D1). В новой системе плоскостей проекций π1/π4 прямая m является линией уровня.
На Рисунке 4.3 плоскость π4 параллельна прямой m=АВ и перпендикулярна к плоскости π2. Прямая m в системе π2/π4 является линией уровня.
Для того чтобы прямая линия была проецирующей прямой вводится плоскость проекций, перпендикулярная к ней. Для прямой общего положения требуется провести две замены плоскостей проекций. На Рисунке 4.4 прямая m=АВ спроецирована на параллельную ей плоскость π4. Затем вводится плоскость проекций π5, перпендикулярная m4. В системе плоскостей проекций π5/π4 прямая m проецируется в точку.
Рисунок 4.4 – Проецирование отрезка прямой в точку
Чтобы определить натуральную величину плоской фигуры общего положения (Рисунок 4.5), требуется сначала ввести такую плоскость проекций π4, чтобы образовалась система, в которой плоскость α, заданная треугольником АВС будет проецирующей. Данную подзадачу можно решить, введя дополнительную плоскость проекций π4 перпендикулярно либо горизонтальной проекции горизонтали, либо фронтальной проекции фронтали. Затем вводится дополнительная плоскость π5, перпендикулярная к плоскости π4 и параллельная плоскости α .
Рисунок 4.5 – Определение натуральной величины треугольника
4.3. Развертывание поверхностей
Разверткой называется плоская фигура, получаемая путем совмещения с плоскостью чертежа поверхности тела.
Построение разверток имеет большое значение в таких областях техники, как котлостроение, судостроение, кровельное и жестяночное дело, продукция которых изготовляется из листового материала.
Точные развертки могут быть построены лишь для линейчатых поверхностей, смежные положения образующих которых параллельны (цилиндрическая поверхность) или пересекаются (коническая поверхность).
Для нелинейчатых поверхностей, образующей которых является кривая линия (например, сферическая поверхность), можно построить развертки лишь приближенные. С этой целью такие поверхности разбиваются на небольшие элементы, и каждая такая часть кривой поверхности заменяется плоскостью. Это означает, что данная кривая поверхность заменяется вписанным в нее многогранником, развертка которого приближенно принимается за развертку кривой поверхности.
Развертка боковой поверхности пирамиды (Рисунок 4.7) состоит из трех треугольников, представляющих в истинном виде боковые грани пирамиды.
Для построения развертки необходимо предварительно определить истинные длины боковых ребер пирамиды. Повернув эти ребра вокруг высоты пирамиды до положения параллельного плоскости ?2, на фронтальной плоскости проекций получим их истинные длины в виде отрезков S2 A 2, S2 B 2, S2 C 2 (Рисунок 4.6).
Построив по трем сторонам S2 A 2, S2 B 2 и A1B1 грань пирамиды ASB (Рисунок 4.7), пристраиваем к ней смежную грань – треугольник BSC, а к последнему – грань CSA. Полученная фигура представит собою развертку боковой поверхности данной пирамиды.
Для получения полной развертки к одной из сторон основания пристраиваем основание пирамиды – треугольник АВС.
Для построения на развертке линии, по которой поверхность пирамиды пересечется плоскостью α (Рисунок 4.7), следует нанести на ребра SA, SB и SC, соответственно, точки 1, 2 и 3, в которых эта плоскость пересекает ребра, определив истинные длины отрезков S1, S2 и S3.
Рисунок 4.6 – Определение истинных длин ребер
Рисунок 4.7 – Построение развертки
4.4. Задание 3. Построение натурального вида сечения пирамиды плоскостью
4.4.1. Условие задания
Задание следует выполнять в соответствии с алгоритмом:
-
- По координатам вершин (Таблицы 3.1- 3.3) построить: две проекции пирамиды 1234S;
-
- Выполнить две проекции сечения пирамиды плоскостью общего положения АВС (Таблица 3.4);
-
- Найти натуральный вид сечения способом перемены плоскостей проекций;
- Выполнить развертку верхней отсеченной части пирамиды.
4.4.2. Рекомендации по выполнению задания № 2
Порядок выполнения задачи следующий:
- Построить горизонтальные и фронтальные проекции пирамиды и 1234S и плоскости ∆АBC (Рисунок 4.8);
- Способом ребер или способом граней построить проекции сечения пирамиды 1234S плоскостью ∆АBC.
Способ ребер заключается в том, что ребро пирамиды (например, 1S) заключается во фронтально-проецирующую плоскость γ: γπ2≡12S2. Затем выполняется построение точки 8 пересечения ребра 1S с плоскостью γ:
Аналогично выполняется построение остальных точек искомого сечения.
Способом граней строятся линии пересечения с помощью плоскостей-посредников;
Рисунок 4.8 – Построение сечения
- Способом перемены плоскостей проекций найти натуральный вид сечения 56789.
Сущность способа перемены плоскостей проекций состоит в том, что положение геометрического образа (прямой, плоскости, поверхности) в пространстве остается неизменным, а система плоскостей проекций π1/π2 дополняется плоскостями, образующими с π1 или π2, либо между собой системы двух взаимно перпендикулярных плоскостей проекций. Расположение новой плоскости проекций по отношению к геометрическим образам выбирается в зависимости от условия задачи.
В данной задаче необходимо дважды ввести новые плоскости проекций: в системе плоскостей π1/π4 сечение 56789 станет проецирующей плоскостью, а в системе плоскостей проекций π4/π5 – плоскостью уровня;
Рисунок 4.9 – Пересечение пирамиды плоскостью общего положения
- Выполнить развертку нижней отсеченной части пирамиды.
Видеопример выполнения задания №3
4.5. Варианты задания 3
Таблица 3.1– Значения координат точек (для вариантов с 1 по 10)S | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
X | 50 | 90 | 30 | 10 | 70 |
Y | 50 | 50 | 5 | 70 | 80 |
Z | 90 | 10 | 10 | 10 | 10 |
S | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
X | 50 | 90 | 30 | 10 | 70 |
Y | 50 | 50 | 5 | 70 | 80 |
Z | 90 | 0 | 0 | 0 | 0 |
S | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
X | 50 | 100 | 25 | 5 | 80 |
Y | 50 | 50 | 5 | 70 | 80 |
Z | 100 | 10 | 10 | 10 | 10 |
Вариант | Координаты (x, y, z) точек | Вариант | Координаты (x, y, z) точек | ||||
---|---|---|---|---|---|---|---|
А | В | С | А | В | С | ||
1 | 100;15;30 | 35; 85; 90 | 10; 45; 30 | 16 | 90; 0; 0 | 100; 50; 70 | 5; 55; 40 |
2 | 65; 10; 0 | 100; 50; 80 | 20; 80; 80 | 17 | 95; 35; 40 | 50; 35; 0 | 5; 65; 50 |
3 | 100; 25;40 | 15; 90; 90 | 50; 15; 0 | 18 | 50; 50; 45 | 0; 55; 0 | 100; 20; 5 |
4 | 30; 80; 90 | 20; 25; 0 | 100; 25; 40 | 19 | 30; 90; 60 | 90; 30; 20 | 0; 35; 0 |
5 | 100; 15; 20 | 100; 60; 90 | 10; 45; 20 | 20 | 95; 15; 0 | 5; 60; 20 | 70; 85; 80 |
6 | 90; 0; 0 | 100; 50; 80 | 5; 55; 40 | 21 | 100;15;30 | 35; 85; 90 | 10; 45; 30 |
7 | 95; 35; 50 | 50; 35; 0 | 5; 65; 50 | 22 | 65; 10; 0 | 100; 50; 80 | 20; 80; 80 |
8 | 50; 50; 55 | 0; 55; 5 | 100; 20; 5 | 23 | 100; 25;40 | 15; 90; 90 | 50; 15; 0 |
9 | 30; 90; 70 | 90; 30; 30 | 0; 35; 0 | 24 | 30; 80; 90 | 20; 25; 0 | 100; 25; 40 |
10 | 95; 15; 10 | 5; 60; 30 | 70; 85; 80 | 25 | 100; 15; 20 | 100; 60; 90 | 10; 45; 20 |
11 | 100;15;20 | 35; 85; 80 | 10; 45; 30 | 26 | 90; 0; 0 | 100; 50; 80 | 5; 55; 40 |
12 | 65; 10; 0 | 100; 50; 70 | 20; 80; 80 | 27 | 95; 35; 50 | 50; 35; 0 | 5; 65; 50 |
13 | 100; 25;30 | 15; 90; 80 | 50; 15; 0 | 28 | 50; 50; 55 | 0; 55; 5 | 100; 20; 5 |
14 | 30; 80; 80 | 20; 25; 0 | 100; 25; 40 | 29 | 30; 90; 70 | 90; 30; 30 | 0; 35; 0 |
15 | 100; 15; 10 | 100; 60; 80 | 10; 45; 20 | 30 | 95; 15; 10 | 5; 60; 30 | 70; 85; 80 |
Рисунок 4.10 – Пример оформления задания 3
Источник