Способ нахождения наименьшего общего делителя

Наибольший общий делитель

Если натуральное число делится только на 1 и на само себя, то оно называется простым.

Любое натуральное число всегда делится на 1 и на само себя.

Число 2 — наименьшее простое число. Это единственное чётное простое число, остальные простые числа — нечётные.

Простых чисел много, и первое среди них — число 2 . Однако нет последнего простого числа. В разделе «Для учёбы» вы можете скачать таблицу простых чисел до 997 .

Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

  • число 12 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 ;
  • число 36 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 , на 18 , на 36 .

Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12 ) называются делителями числа.

Делитель натурального числа a — это такое натуральное число, которое делит данное число « a » без остатка.

Натуральное число, которое имеет более двух делителей называется составным.

Обратите внимание, что числа 12 и 36 имеют общие делители. Это числа: 1, 2, 3, 4, 6, 12 . Наибольший из делителей этих чисел — 12 .

Общий делитель двух данных чисел « a » и « b » — это число, на которое делятся без остатка оба данных числа « a » и « b ».

Наибольший общий делитель (НОД) двух данных чисел « a » и « b » — это наибольшее число, на которое оба числа « a » и « b » делятся без остатка.

Кратко наибольший общий делитель чисел « a » и « b » записывают так:

Пример: НОД (12; 36) = 12 .

Делители чисел в записи решения обозначают большой буквой «Д».

Числа 7 и 9 имеют только один общий делитель — число 1 . Такие числа называют взаимно простыми числами.

Взаимно простые числа — это натуральные числа, которые имеют только один общий делитель — число 1 . Их НОД равен 1 .

Как найти наибольший общий делитель

Чтобы найти НОД двух или более натуральных чисел нужно:

  1. разложить делители чисел на простые множители;

Вычисления удобно записывать с помощью вертикальной черты. Слева от черты сначала записываем делимое, справа — делитель. Далее в левом столбце записываем значения частных.

Поясним сразу на примере. Разложим на простые множители числа 28 и 64 .

    Подчёркиваем одинаковые простые множители в обоих числах.
    28 = 2 · 2 · 7

64 = 2 · 2 · 2 · 2 · 2 · 2
Находим произведение одинаковых простых множителей и записать ответ;
НОД (28; 64) = 2 · 2 = 4

Ответ: НОД (28; 64) = 4

Оформить нахождение НОД можно двумя способами: в столбик (как делали выше) или «в строчку».

Первый способ записи НОД

Найти НОД 48 и 36 .

НОД (48; 36) = 2 · 2 · 3 = 12

Второй способ записи НОД

Теперь запишем решение поиска НОД в строчку. Найти НОД 10 и 15 .

На нашем информационном сайте вы также можете с помощью программы помощника найти наибольший общий делитель онлайн, чтобы проверить свои вычисления.

Источник

Наибольший общий делитель — правила, алгоритмы и примеры нахождения НОД

Понятие НОД

Определение, что такое НОД в математике, звучит следующим образом: наибольший делитель, общий для чисел a и b, есть такое наибольшее число, на которое описанные значения смогут разделиться без остатка.

Для наилучшего понимания того, как найти НОД двух чисел, вместо указанных переменных достаточно подставлять простые числа, например, 12 и 9. То есть самым наименьшим делимым числом для 12 и 9 является то, которое позволяет найти решение без остатка.

Задача по нахождению НОД может решаться тремя способами. Каждый из них применяется в зависимости от того, насколько быстро требуется найти необходимый показатель:

  1. Первый метод схож с алгоритмом Евклида для нахождения НОД. Он достаточно трудоемкий и канонический. Необходимо искать все возможные делители, а через них — наибольший делитель, являющийся общим для значений. Если выписывать все показатели, на которые поделятся 12 и 9, наибольшим окажется 3.
  2. Второй способ предполагает разложение пары чисел на простые множители и перемножение наибольших из них между собой.
  3. Суть следующего способа: компоненты, которые подлежат поиску наибольшего общего делителя, начинают раскладывать на простые множители. Это значит, что из разложения первого нужно вычеркнуть множители, какие не попадают во второе значение. Остальные показатели в первом разложении перемножаются и оказываются НОД.

Лучше всего рассматривать применение указанных методов через определенный класс задач, которые помогают при дальнейшем изучении теорем, касающихся дробей. Формулы для указанной темы очень доступны для понимания ученикам и учителям.

Метод разложения

Суть второй методики заключается в разложении на простые множители и перемножении общих из них. В качестве примера можно рассмотреть представление НОД для показателей 18 и 24:

  1. Оба параметра раскладываются на множители — 24 на 1, 2, 3, 4, 6, 8, 12, 24, а 18 на 1, 2, 3, 6, 9, 18. Происходит поиск общих значений.
  2. Необходимо перемножать между собой общие множители. Если есть риск запутаться, то стоит подчеркивать общие значения.
  3. В результате поиска соотношений выделяют в качестве общих значений 2 и 3. После перемножения они дают число 6. Именно это линейное число и считается наибольшим объединенным делителем.
Читайте также:  Основные способы решения дифференциальных уравнений второго порядка

Способ является достаточно простым. Однако из-за некоторого объема операций можно оказаться в сложной ситуации с поиском общих делителей, поэтому следует рассмотреть еще один способ.

Вычеркивание показателей

Для третьей методики характерно вычеркивание из разложения тех показателей, которые не проходят во второе число. Есть такие виды НОД, которые могут сильно отличаться, но все равно позволяют найти нужный показатель. Например, нужно найти наибольший делитель для значений 28 и 16:

  1. Сначала раскладывают оба параметра на простые множители. Для 28 таковыми считаются 1, 2, 4, 7, 14, 28, для 16 это 1, 2, 4, 8,16.
  2. Из разложения первого объекта по формуле следует вычеркнуть показатель 7, так как он не входит в группу делителей второго.
  3. После перемножения наибольшим делителем оказывается 4. Проверка в виде деления на него 28 и 16 показывает, что именно он и является нужным НОДом.

Аналогично можно отыскать для других значений, например, 100 и 40. После разложения из первого перечеркивается лишняя пятерка. Перемножение дает 20, который после поверки оказывается наибольшим делителем.

Несколько значений

Несмотря на кажущуюся сложность, доказать, что возможно найти НОД для нескольких чисел без помощи онлайн-калькуляторов, вполне реально. Значения, подлежащие поиску, необходимо разложить на множители. После чего ищется произведение общих простейших множителей.

Есть такие числа как 18, 24 и 36. Разложение 18 дает такие коэффициенты как 1, 2, 3, 6, 9 и 18. Затем 24 и 36 необходимо править по аналогичному методу. Если составить таблицу, то можно найти следующие общие показатели в виде 2 и 3. Они считаются общими для всех трех чисел.

Перемножив между собой, получается делимое число 6. Оно также подходит под разложение 18, 24 и 36, а также считается наибольшим общим делителем для всех трех параметров. Аналогичный принцип срабатывает и для четырех и более чисел, когда потребуется найти делитель на любом уровне сложности вплоть до максимального.

Наименьшее общее кратное

Помимо НОД, существует еще и наименьшее общее кратное, или НОК. Если сказать по-другому, то таковым свойством можно считать число, которое без остатка будет разделяться на число a и число b.

Как и для НОД, поиск НОК может осуществляться тремя похожими с предшествующими способами. Каждым из них можно воспользоваться в зависимости от ситуации и удобства решения задания:

  • Первый метод достаточно простой и распространенный. Необходимо записать кратные первых чисел, после чего подобрать такое число, чтобы оно являлось общим для всех и наименьшим.
  • Также возможно раскладывать кратные на простые натуральные множители. В этом случае переписываются множители из первого разложения и прибавляются недостающие во второе. Получаемые значения перемножают между собой и получают НОК.
  • Особняком стоит третий метод, который работает при соблюдении определенных условий. Одним из них является то, что НОК ищут для двух чисел, и на предыдущих этапах был найден наибольший общий делитель.

На последнем методе стоит остановиться несколько подробнее. Он является не только сравнительно менее громоздким, но и обладает определенным преимуществом в виде уже найденного НОД и более простого алгоритма решения.

Совмещение делителей

Такая методика характерна для тех примеров, в которых требуется единовременное нахождение НОД и НОК двух чисел. Например, необходимо отыскать для чисел 24 и 12 НОК и НОК. Действовать нужно в следующем порядке:

  • Первым делом нужно найти НОД. Для этого надлежит раскладывать оба числа, отыскать общий показатель 12.
  • После этого 24 и 12 перемножаются между собой. Результатом становится 288.
  • Полученное число требуется разделять на НОД от 24 и 12. Полученный ответ 24 говорит о том, что именно оно является наименьшим общим кратным для 24 и 12.

Сходный механизм действует и при поиске НОК и НОД исходя из другой пары чисел. В каждом примере необходимо сначала отыскать наибольший делитель, перемножить два числа и получить наименьшее кратное.

Что касается решения с помощью интернет-ресурсов, то на сегодняшний день имеется много онлайн-калькуляторов и программ, которые дают возможность сравнительно быстро найти НОД и НОК и подсказать грамотные пути решения.

Нахождение наибольшего делителя и НОК является не только распространенной, но и сравнительно трудной задачей для учеников средней школы. Ведь если не рассмотреть подробно такую тему, то дальнейшее изучение дробей, которые включают в себя числитель и знаменатель, окажется практически невозможным.

Важно грамотно использовать ресурсы на специальных математических сайтах, где могут подробно и понятно объяснить разложение дробей и нахождение общих делителей. Бояться ошибиться в такой теме не стоит, поскольку при правильном подходе она пройдет достаточно быстро, а вычисление различных по уровню сложности примеров не составит особых сложностей.

Источник

Наибольший общий делитель (НОД): определение, примеры и свойства

Эта статья посвящена такому вопросу, как нахождение наибольшего общего делителя. Сначала мы объясним, что это такое, и приведем несколько примеров, введем определения наибольшего общего делителя 2 , 3 и более чисел, после чего остановимся на общих свойствах данного понятия и докажем их.

Что такое общие делители

Чтобы понять, что из себя представляет наибольший общий делитель, сначала сформулируем, что вообще такое общий делитель для целых чисел.

В статье о кратных и делителях мы говорили, что у целого числа всегда есть несколько делителей. Здесь же нас интересуют делители сразу некоторого количества целых чисел, особенно общие (одинаковые) для всех. Запишем основное определение.

Общим делителем нескольких целых чисел будет такое число, которое может быть делителем каждого числа из указанного множества.

Читайте также:  Самый простой способ вязания пинеток крючком для начинающих

Вот примеры такого делителя: тройка будет общим делителем для чисел — 12 и 9 , поскольку верны равенства 9 = 3 · 3 и − 12 = 3 · ( − 4 ) . У чисел 3 и — 12 есть и другие общие делители, такие, как 1 , − 1 и − 3 . Возьмем другой пример. У четырех целых чисел 3 , − 11 , − 8 и 19 будет два общих делителя: 1 и — 1 .

Зная свойства делимости, мы можем утверждать, что любое целое число можно разделить на единицу и минус единицу, значит, у любого набора целых чисел уже будет как минимум два общих делителя.

Также отметим, что если у нас есть общий для нескольких чисел делитель b , то те же числа можно разделить и на противоположное число, то есть на — b . В принципе, мы можем взять лишь положительные делители, тогда все общие делители также будут больше 0 . Такой подход также можно использовать, однако совсем игнорировать отрицательные числа не следует.

Что такое наибольший общий делитель (НОД)

Согласно свойствам делимости, если b является делителем целого числа a , которое не равно 0, то модуль числа b не может быть больше, чем модуль a , следовательно, любое число, не равное 0 , имеет конечное число делителей. Значит, число общих делителей нескольких целых чисел, хотя бы одно из которых отличается от нуля, также будет конечным, и из всего их множества мы всегда можем выделить самое большое число (ранее мы уже говорили о понятии наибольшего и наименьшего целого числа, советуем вам повторить данный материал).

В дальнейших рассуждениях мы будем считать, что хотя бы одно из множества чисел, для которых нужно найти наибольший общий делитель, будет отлично от 0 . Если они все равны 0 , то их делителем может быть любое целое число, а поскольку их бесконечно много, выбрать наибольшее мы не сможем. Иначе говоря, найти наибольший общий делитель для множества чисел, равных 0 , нельзя.

Переходим к формулировке основного определения.

Наибольшим общим делителем нескольких чисел является самое большое целое число, которое делит все эти числа.

На письме наибольший общий делитель чаще всего обозначается аббревиатурой НОД. Для двух чисел его можно записать как НОД ( a , b ) .

Какой можно привести пример НОД для двух целых чисел? Например, для 6 и — 15 это будет 3 . Обоснуем это. Сначала запишем все делители шести: ± 6 , ± 3 , ± 1 , а потом все делители пятнадцати: ± 15 , ± 5 , ± 3 и ± 1 . После этого мы выбираем общие: это − 3 , − 1 , 1 и 3 . Из них надо выбрать самое большое число. Это и будет 3 .

Для трех и более чисел определение наибольшего общего делителя будет почти таким же.

Наибольшим общим делителем трех чисел и более будет самое большое целое число, которое будет делить все эти числа одновременно.

Для чисел a 1 , a 2 , … , a n делитель удобно обозначать как НОД ( a 1 , a 2 , … , a n ) . Само значение делителя записывается как НОД ( a 1 , a 2 , … , a n ) = b .

Приведем примеры наибольшего общего делителя нескольких целых чисел: 12 , — 8 , 52 , 16 . Он будет равен четырем, значит, мы можем записать, что НОД ( 12 , — 8 , 52 , 16 ) = 4 .

Проверить правильность данного утверждения можно с помощью записи всех делителей этих чисел и последующего выбора наибольшего из них.

На практике часто встречаются случаи, когда наибольший общий делитель равен одному из чисел. Это происходит тогда, когда на данное число можно разделить все остальные числа (в первом пункте статьи мы привели доказательство этого утверждения).

Так, наибольший общий делитель чисел 60 , 15 и — 45 равен 15 , поскольку пятнадцать делится не только на 60 и — 45 , но и на само себя, и большего делителя для всех этих чисел не существует.

Особый случай составляют взаимно простые числа. Они представляют собой целые числа с наибольшим общим делителем, равным 1 .

Основные свойства НОД и алгоритм Евклида

У наибольшего общего делителя есть некоторые характерные свойства. Сформулируем их в виде теорем и докажем каждое из них.

Отметим, что данные свойства сформулированы для целых чисел больше нуля, а делители мы рассмотрим только положительные.

Числа a и b имеют наибольший общий делитель, равный НОД для b и a , то есть НОД ( a , b ) = НОД ( b , a ) . Перемена мест чисел не влияет на конечный результат.

Данное свойство следует из самого определения НОД и не нуждается в доказательствах.

Если число a можно разделить на число b , то множество общих делителей этих двух чисел будет аналогично множеству делителей числа b , то есть НОД ( a , b ) = b .

Докажем это утверждение.

Если у чисел a и b есть общие делители, то на них можно разделить любое из них. В то же время если a будет кратным b, то любой делитель b будет делителем и для a , поскольку у делимости есть такое свойство, как транзитивность. Значит, любой делитель b будет общим для чисел a и b . Это доказывает, что если мы можем разделить a на b , то множество всех делителей обоих чисел совпадет с множеством делителей одного числа b . А поскольку наибольший делитель любого числа есть само это число, то наибольший общий делитель чисел a и b будет также равен b , т.е. НОД ( a , b ) = b . Если a = b , то НОД ( a , b ) = НОД ( a , a ) = НОД ( b , b ) = a = b , например, НОД ( 132 , 132 ) = 132 .

Используя это свойство, мы можем найти наибольший общий делитель двух чисел, если одно из них можно разделить на другое. Такой делитель равен одному из этих двух чисел, на которое можно разделить второе число. К примеру, НОД ( 8 , 24 ) = 8 , так как 24 есть число, кратное восьми.

Если верно равенство a = b · q + c (здесь все переменные являются целыми числами), то все общие делители двух чисел a и b будут такими же, как и у чисел b и c , то есть НОД ( a , b ) = НОД ( b , c ) .

Читайте также:  Маринованный чеснок способ приготовления

Попробуем доказать данное свойство. У нас изначально есть равенство a = b · q + c , и любой общий делитель a и b будет делить и c , что объясняется соответствующим свойством делимости. Поэтому любой общий делитель b и c будет делить a . Значит, множество общих делителей a и b совпадет с множеством делителей b и c , в том числе и наибольшие из них, значит, равенство НОД ( a , b ) = НОД ( b , c ) справедливо.

Следующее свойство получило название алгоритма Евклида. С его помощью можно вычислить наибольший общий делитель двух чисел, а также доказать другие свойства НОД.

Перед тем, как сформулировать свойство, советуем вам повторить теорему, которую мы доказывали в статье о делении с остатком. Согласно ей, делимое число a можно представить в виде b · q + r , причем b здесь является делителем, q – некоторым целым числом (его также называют неполным частным), а r – остатком, который удовлетворяет условию 0 ≤ r ≤ b .

Допустим, у нас есть два целых числа больше 0 , для которых будут справедливы следующие равенства:

a = b · q 1 + r 1 , 0 r 1 b b = r 1 · q 2 + r 2 , 0 r 2 r 1 r 1 = r 2 · q 3 + r 3 , 0 r 3 r 2 r 2 = r 3 · q 4 + r 4 , 0 r 4 r 3 ⋮ r k — 2 = r k — 1 · q k + r k , 0 r k r k — 1 r k — 1 = r k · q k + 1

Эти равенства заканчиваются тогда, когда r k + 1 становится равен 0 . Это случится обязательно, поскольку последовательность b > r 1 > r 2 > r 3 , … представляет собой ряд убывающих целых чисел, который может включать в себя только конечное их количество. Значит, r k является наибольшим общим делителем a и b , то есть, r k = НОД ( a , b ) .

В первую очередь нам надо доказать, что r k – это общий делитель чисел a и b , а после этого – то, что r k является не просто делителем, а именно наибольшим общим делителем двух данных чисел.

Просмотрим список равенств, приведенный выше, снизу вверх. Согласно последнему равенству,
r k − 1 можно разделить на r k . Исходя из этого факта, а также предыдущего доказанного свойства наибольшего общего делителя, можно утверждать, что r k − 2 можно разделить на r k , так как
r k − 1 делится на r k и r k делится на r k .

Третье снизу равенство позволяет нам сделать вывод, что r k − 3 можно разделить на r k , и т.д. Второе снизу – что b делится на r k , а первое – что a делится на r k . Из всего этого заключаем, что r k – общий делитель a и b .

Теперь докажем, что r k = НОД ( a , b ) . Что для этого нужно сделать? Показать, что любой общий делитель a и b будет делить r k . Обозначим его r 0 .

Просмотрим тот же список равенств, но уже сверху вниз. Исходя из предыдущего свойства, можно заключить, что r 1 делится на r 0 , значит, согласно второму равенству r 2 делится на r 0 . Идем по всем равенствам вниз и из последнего делаем вывод, что r k делится на r 0 . Следовательно, r k = НОД ( a , b ) .

Рассмотрев данное свойство, заключаем, что множество общих делителей a и b аналогично множеству делителей НОД этих чисел. Это утверждение, которое является следствием из алгоритма Евклида, позволит нам вычислить все общие делители двух заданных чисел.

Перейдем к другим свойствам.

Если a и b являются целыми числами, не равными 0 , то должны существовать два других целых числа u 0 и v 0 , при которых будет справедливым равенство НОД ( a , b ) = a · u 0 + b · v 0 .

Равенство, приведенное в формулировке свойства, является линейным представлением наибольшего общего делителя a и b . Оно носит название соотношения Безу, а числа u 0 и v 0 называются коэффициентами Безу.

Докажем данное свойство. Запишем последовательность равенств по алгоритму Евклида:

a = b · q 1 + r 1 , 0 r 1 b b = r 1 · q 2 + r 2 , 0 r 2 r 1 r 1 = r 2 · q 3 + r 3 , 0 r 3 r 2 r 2 = r 3 · q 4 + r 4 , 0 r 4 r 3 ⋮ r k — 2 = r k — 1 · q k + r k , 0 r k r k — 1 r k — 1 = r k · q k + 1

Первое равенство говорит нам о том, что r 1 = a − b · q 1 . Обозначим 1 = s 1 и − q 1 = t 1 и перепишем данное равенство в виде r 1 = s 1 · a + t 1 · b . Здесь числа s 1 и t 1 будут целыми. Второе равенство позволяет сделать вывод, что r 2 = b − r 1 · q 2 = b − ( s 1 · a + t 1 · b ) · q 2 = − s 1 · q 2 · a + ( 1 − t 1 · q 2 ) · b . Обозначим − s 1 · q 2 = s 2 и 1 − t 1 · q 2 = t 2 и перепишем равенство как r 2 = s 2 · a + t 2 · b , где s 2 и t 2 также будут целыми. Это объясняется тем, что сумма целых чисел, их произведение и разность также представляют собой целые числа. Точно таким же образом получаем из третьего равенства r 3 = s 3 · a + t 3 · b , из следующего r 4 = s 4 · a + t 4 · b и т.д. В конце заключаем, что r k = s k · a + t k ·b при целых s k и t k . Поскольку r k = НОД ( a , b ) , обозначим s k = u 0 и t k = v 0 , В итоге мы можем получить линейное представление НОД в требуемом виде: НОД ( a , b ) = a · u 0 + b · v 0 .

НОД ( m · a , m · b ) = m · НОД ( a , b ) при любом натуральном значении m .

Обосновать это свойство можно так. Умножим на число m обе стороны каждого равенства в алгоритме Евклида и получим, что НОД ( m · a , m · b ) = m · r k , а r k – это НОД ( a , b ) . Значит, НОД ( m · a , m · b ) = m ·НОД ( a , b ) . Именно это свойство наибольшего общего делителя используется при нахождении НОД методом разложения на простые множители.

Если у чисел a и b есть общий делитель p , то НОД ( a : p , b : p ) = НОД ( a , b ) : p . В случае, когда p = НОД ( a , b ) получим НОД ( a : НОД ( a , b ) , b : НОД ( a , b ) = 1 , следовательно, числа a : НОД ( a , b ) и b : НОД ( a , b ) являются взаимно простыми.

Поскольку a = p · ( a : p ) и b = p · ( b : p ) , то, основываясь на предыдущем свойстве, можно создать равенства вида НОД ( a , b ) = НОД ( p · ( a : p ) , p · ( b : p ) ) = p ·НОД ( a : p , b : p ) , среди которых и будет доказательство данного свойства. Это утверждение мы используем, когда приводим обыкновенные дроби к несократимому виду.

Наибольшим общим делителем a 1 , a 2 , … , a k будет число d k , которое можно найти, последовательно вычисляя НОД ( a 1 , a 2 ) = d 2 , НОД ( d 2 , a 3 ) = d 3 , НОД ( d 3 , a 4 ) = d 4 , … , НОД ( d k — 1 , a k ) = d k .

Это свойство полезно при нахождении наибольшего общего делителя трех и более чисел. С помощью него можно свести это действие к операциям с двумя числами. Его основой является следствие из алгоритма Евклида: если множество общих делителей a 1 , a 2 и a 3 совпадает с множеством d 2 и a 3 , то оно совпадет и с делителями d 3 . Делители чисел a 1 , a 2 , a 3 и a 4 совпадут с делителями d 3 , значит, они совпадут и с делителями d 4 , и т.д. В конце мы получим, что общие делители чисел a 1 , a 2 , … , a k совпадут с делителями d k , а поскольку наибольшим делителем числа d k будет само это число, то НОД ( a 1 , a 2 , … , a k ) = d k .

Это все, что мы хотели бы рассказать о свойствах наибольшего общего делителя.

Источник

Оцените статью
Разные способы