Способ нахождения горизонтальной асимптоты

Асимптоты графика функции

Часто задание на нахождение асимптот функции встречается в курсе математического анализа, в частности при решении задач на тему исследования функции. Для того, чтобы успешно ответить на вопрос: как найти асимптоты функции? необходимо уметь вычислять пределы, понимать что они собой представляют, знать основные методы решения пределов. Если всё это вы умеете на должном уровне, тогда найти асимптоты для вас не будет проблемой. Итак, что такое асимптота? Асимптота это линия, к которой бесконечно приближается ветвь графика функции. Чтобы было наглядно, посмотрите на изображения представленные ниже.

Обратите внимание, что соприкосновения между асимптотой и графиками нет, и не должно быть. Асимптота бесконечно приближается к графику функции. Давайте рассмотрим какие виды асимптоты функции бывают и как их находить, но о последнем будет рассказано далее.

Из таблицы узнаем, что асимптоты у функции бывают трех видов: вертикальные, горизонтальные, наклонные. Каждую найти асимптоту функции нужно по своему. Для этого нужны лимиты. Сколько бывает асимптот всего у функции? Ответ: ни одной, одна, две, три. и бесконечно много. У каждой функции по разному.

Вертикальные асимптоты

Чтобы найти данный вид асимптот необходимо найти область определения заданной функции и отметить точки разрыва. В этих точках предел функции будет равен бесконечности, а это значит, что функция в этой точке бесконечно приближается к линии асимптоты.

Горизонтальные асимптоты

Необходимо устремить аргумент лимита функции к бесконечности. Если предел существует и равен числу, то горизонтальная асимптота будет найдена и равна $ y=y_0 $ как показано во втором столбце таблицы

Наклонные асимптоты

Наклонная асимптота представляется в виде $ y = kx+b $. Где $ k $ — это коэффициент наклона асимптоты. Сначала находится коэффициент $ k $, затем $ b $. Если какой либо из них равен $ \infty $, тогда наклонной асимптоты нет. А если $ b = 0 $, то получаем горизонтальную асимптоту. Так что для экономии времени лучше сразу находить наклонную асимптоту, а горизонтальная проявится сама собой в случае её существования.

Примеры решений

Для начала решения найдем вертикальные асимптоты, но прежде найдем область определения функции $ f(x) $. По определению знаменатель не должен быть равен нулю. Поэтому имеем, $ 3x+2 \neq 0; 3x \neq -2; x \neq -\frac<2> <3>$. Получили точку разрыва $ x = -\frac<2> <3>$. Вычислим в ней предел функции и убедимся окончательно, что вертикальная асимптота это $ x = -\frac<2> <3>$.

Теперь найдем горизонтальные асимптоты, но прежде рассчитаем коэффициенты $ k $ и $ b $.

Так как $ k = 0 $, то мы уже понимаем то, что наклонных асимптот нет, а есть горизонтальные. Найдем теперь коэффициент $ b $.

Подставляем найденные коэффициенты в формулу $ y = kx + b $, получаем, что $ y = \frac<5> <3>$ — горизонтальная асимптота.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Пример 1
Найти все асимптоты графика функции $$ f(x) = \frac<5x> <3x+2>$$
Решение
Ответ
$$ y = \frac<5> <3>$$

Найдем область определения данного примера, чтобы определить вертикальные асимптоты. $ 1-x \neq 0; x \neq 1; $. Точка разрыва $ x = 1 $, а это значит что это и есть вертикальная асимптота. Найдем для доказательства предположения предел в этой точке. $$ \lim\limits_ \frac<1> <1-x>= \frac<1> <0>= \infty $$

Приступим к поиску наклонных асимптот.

Итого, $ y=0 $ — горизонтальная асимптота.

Пример 2
Найти все асимптоты графика функции $ f(x) = \frac<1> <1-x>$
Решение
Ответ
$$ y=0 $$

Замечаем, что знаменатель не обращается в ноль при любом значении икса. А это значит, что нет точек разрыва и следовательно нет вертикальных асимптот. Остается найти горизонтальные асимптоты.

Так как $ k $ конечное число, не равное $ 0 $ или бесконечности, то существует наклонная асимптота. Вычислим недостающее число $ b $.

$ y =\frac<1><3>x $ — наклонная асимптота к функции с углом наклона одна третья.

Пример 3
Найти все асимптоты графика функции $ f(x) = \frac <3x^2+5>$
Решение
Ответ
$$ y =\frac<1><3>x $$

Нет точек разрыва, а это значит, нет вертикальных асимптот.

$ y = 0 $ — горизонтальная асимптота

Пример 4
Найти асимптоты $ f(x) = xe^ <-x>$
Решение
Ответ
$$ y = 0 $$

Если в задачах даются элементарные функции, то заранее известно сколько и есть ли асимптоты. Например, у параболы, кубической параболы, синусоиды вообще нет никаких. У графиков функций таких как логарифмическая или экспоненциальная есть по одной. А у функций тангенса и котангенса бесчисленное множество асимптот, но арктангенс и арккатангенс имеет по две штуки.

Во всех приведенных примерах пределы вычислялись с помощью правило Лопиталя, которое очень ускоряет процесс вычисления и создает меньше ошибок.

Источник

Асимптоты графиков функций

Вертикальные асимптоты
Наклонные асимптоты
Горизонтальные асимптоты как частный случай наклонных асимптот
Поиск наклонных асимптот графиков функций

Вертикальные асимптоты

Во многих разделах нашего справочника приведены графики различных функций. Для многих функций существуют прямые, к которым графики функций неограниченно приближаются. Такие прямые называют асимптотами, и их точное определение мы дадим чуть позже. Как мы увидим далее, асимптоты бывают вертикальными, горизонтальными и наклонными. С вертикальными и горизонтальными асимптотами графика функции мы уже встречались, в частности, в разделе «Гипербола на координатной плоскости. График дробно-линейной функции». С наклонными асимптотами, за исключением горизонтальных, мы пока еще дела не имели.

Определение 1. Говорят, что x стремится к x0 слева и обозначают

Говорят, что x стремится к x0 справа и обозначают

Определение 2. Прямую

называют вертикальной асимптотой графика функции y = f (x) при x , стремящемся к с справа, если функция y = f (x) определена на некотором интервале (с, d) и выполнено соотношение выполнено соотношение

при xc + 0

называют вертикальной асимптотой графика функции y = f (x) при x , стремящемся к с слева, если функция y = f (x) определена на некотором интервале (d, c) и выполнено соотношение выполнено соотношение

при xc – 0

Пример 1. Прямая

является вертикальной асимптотой графика функции

как справа, так и слева (рис. 1)

Пример 2. Прямая

является вертикальной асимптотой графика функции

при x , стремящемся к 0 справа (рис. 2)

Наклонные асимптоты

Определение 3. Прямую

называют наклонной асимптотой графика функции y = f (x) при x , стремящемся к , если функция y = f (x) определена на некотором интервале и выполнено соотношение выполнено соотношение

называют наклонной асимптотой графика функции y = f (x) при x , стремящемся к , если функция y = f (x) определена на некотором интервале и выполнено соотношение выполнено соотношение

Горизонтальные асимптоты как частный случай наклонных асимптот

Определение 4. Прямую

называют горизотальной асимптотой графика функции y = f (x) при x , стремящемся к , если функция y = f (x) определена на некотором интервале и выполнено соотношение выполнено соотношение

называют горизотальной асимптотой графика функции y f (x) при x , стремящемся к , если функция y = f (x) определена на некотором интервале и выполнено соотношение выполнено соотношение

Замечание . Из определений 3 и 5 вытекает, что горизонтальная асимптота является частным случаем наклонной асимптоты y = kx + b, когда угловой коэффициент прямой k = 0 .

Пример 3. Прямая

является горизонтальной асимптотой графика функции

как при x , стремящемся к , так и при x , стремящемся к (рис. 3)

Пример 4. Прямая

является горизонтальной асимптотой графика функции

при x , стремящемся к (рис. 4)

имеет две горизонтальные асимптоты: прямая

является горизонтальной асимптотой графика функции при , а прямая

является горизонтальной асимптотой графика функции при .

Поиск наклонных асимптот графиков функций

Для того, чтобы найти наклонную асимптоту графика функции y = f (x) при (или убедиться, что наклонной асимптоты при не существует), нужно совершить 2 операции.

Первая операция. Вычислим предел предел

(1)

Если предел (1) не существует или существует, но равен существует, но равен , то делаем вывод о том, что у графика функции y = f (x) при наклонных асимптот нет.

переходим ко второй операции.

Вторая операция. Вычислим предел предел

(2)

Если предел (2) не существует или существует, но равен существует, но равен , то делаем вывод о том, что у графика функции y = f (x) при наклонных асимптот нет.

делаем вывод о том, что прямая

является наклонной асимптотой графика функции y = f (x) при .

Совершенно аналогично поступаем для того, чтобы найти наклонную асимптоту графика функции y = f (x) при (или убедиться, что наклонной асимптоты при не существует).

Первая операция. Вычислим предел предел

(3)

Если предел (3) не существует или существует, но равен существует, но равен , то делаем вывод о том, что у графика функции y = f (x) при наклонных асимптот нет.

переходим ко второй операции.

Вторая операция. Вычислим предел предел

(4)

Если предел (4) не существует или существует, но равен существует, но равен , то делаем вывод о том, что у графика функции y = f (x) при наклонных асимптот нет.

делаем вывод о том, что прямая

является наклонной асимптотой графика функции y = f (x) при .

Пример 5. Найти асимптоты графика функции

(5)

и построить график этой функции.

Решение. Функция (5) определена для всех и вертикальных асимптот не имеет.

Найдем наклонные асимптоты графика функции (5). При получаем

Отсюда вытекает, что прямая

– наклонная асимптота графика функции (5) при .

При получаем

Отсюда вытекает, что прямая

– наклонная асимптота графика функции (5) при .

Итак, y’ > 0 при x > 0 , y’ при x y’ = 0 при x = 0 . Точка x = 0 – стационарная, причем производная функции (5) при переходе через точку x = 0 меняет знак с «–» на «+» . Следовательно, x = 0 – точка минимума функции (5). Других критических точек у функции (5) нет.

Теперь мы уже можем построить график функции (5):

Заметим, что график функции (5) находится выше асимптот y = x и y =v– x , поскольку справедливо неравенство:

.

Источник

Читайте также:  Выполнен ремонт хозяйственным способом проводка
Оцените статью
Разные способы