- Способ находить по известному приближению решения следующее более точное приближение это
- Метод последовательных приближений
- Метод простой итерации
- Готовые работы на аналогичную тему
- Метод последовательных приближений решения дифференциального уравнения
- 3.2.1. Метод простых итераций (метод последовательных приближений)
Способ находить по известному приближению решения следующее более точное приближение это
Это способ численного решения математических задач. Его суть – нахождение алгоритма поиска по известному приближению (приближенному значению) искомой величины следующего, более точного приближения. Применяется в случае, когда последовательность приближений по указанному алгоритму сходится.
Данный метод называют также методом последовательных приближений, методом повторных подстановок, методом простых итераций и т.п.
Поясним суть метода на примере решения уравнения
f(x) = 0. (1)
Будем вместо уравнения (1) рассматривать равносильное ему уравнение
х = F(x), (2)
где F(x) = f(x) + х.
Пусть х0 – произвольное число (начальное приближение искомого корня уравнения (1)). Рассмотрим последовательность
х1 = F(x0), x2 = F(x1), …, xn= F(xn-1), …
Если эта последовательность имеет предел, то он и есть решение (корень) уравнения (2), а значит, и уравнения (1).
Процесс составления последовательных приближений наглядно показан на рис., где кривая – график функции у = F(x), а прямая – биссектриса первого и третьего координатных углов (ее уравнение у = х).
Последовательность <xn> сходится, например, если выполнены оба условия:
F(x) > x; ,
где ε > 0 – достаточно малое положительное число (в этом случае как раз и будет ситуация, изображенная на рис.).
Источник
Метод последовательных приближений
Вы будете перенаправлены на Автор24
Одной из целей этого метода состоит в нахождении приближенных решений уравнений. Одним из таких методов является метод простой итерации.
Метод простой итерации
Метод простой итерации — один из самых простейших численных методов для решения уравнений.
Идея метода простой итерации.
Пусть нам необходимо решить уравнение $f\left(x\right)=0$.
Вначале для его решения приведем его к эквивалентному уравнению вида
Рассмотрим пример такого приведения:
Привести уравнение $
Решение.
Здесь есть три способа такого преобразования:
После этого каким-либо образом выбирается начальное приближение $x_0$, вычисляется значение $\varphi (x_0)$ и находится уточненное значение $x_1=\varphi (x_0)$. Следующее уточненное значение будет находиться как $x_2=\varphi (x_1)$ и т.д. Каждый такой шаг называется шагом итерации.
Сформулируем и докажем следующую теорему:
Функция $\varphi (x)$ определена и дифференцируема на отрезке $[a,b]$ и $\varphi (x)\in [a,b]$. Тогда, если \textbar $<\varphi >‘\left(x\right)|
Процесс итерации $x_n=\varphi (x_
$<\mathop
Доказательство.
\item Так как $X=\varphi (x)$ и $x_n=\varphi (x_
\[x_n-X=\varphi \left(x_
По теореме о среднем, получаем
Пусть $M=max |<\varphi >‘\left(x\right)|$, тогда $|x_n-X|\le M|x_
\[\left|x_n-X\right|\le M\left|x_
То есть получим, что
Следовательно, для того чтобы метод сходился нужно, чтобы $M=max |<\varphi >‘\left(x\right)|$ было меньше единицы, значит $\left|<\varphi >‘\left(x\right)\right|
Рассмотрим $x_n=\varphi (x_
\[x_
По теореме о среднем $x_
Так как $\left|<\varphi >‘\left(x\right)\right|\le q
Рассмотрим теперь $f\left(x\right)=x-\varphi \left(x\right)$, $f^<'\left(x\right)>=1-<\varphi >^<'\left(x\right)>\ge 1-q$. Значит, $\left|x_n-\varphi \left(x_n\right)\right|=\left|f\left(x_n\right)-f\left(X\right)\right|=\left|x_n-X\right|\left|f’\left(x_n\right)\right|\ge \left(1-q\right)|x_n-X|$. Следовательно, $|x_n-X|\le \frac<\left|x_n-\varphi \left(x_n\right)\right|><1-q>\le \frac<|x_
Из двух полученных неравенств, имеем
Пусть $|x_n-X|\le \varepsilon $, тогда $x_0,x_1,\dots ,x_n$ нужно вычислять до тех пор, пока не выполнится неравенство $|x_n-x_$, тогда получим, что $X=x_n\pm \varepsilon $. Отсюда следует, что $X$ корень уравнения $x=\varphi (x)$, то есть $X=\varphi (X)$.
Предположим, что это уравнение имеет еще один корень $X’=\varphi \left(X’\right)$. Отсюда $X’-X=\varphi \left(X’\right)-\varphi \left(X\right)$, тогда $\left(X’-X\right)\left|1-<\varphi >‘\left(C\right)\right|=0$. Значит $X’=X$.
Готовые работы на аналогичную тему
Теорема доказана.
Из теоремы будет вытекать погрешность метода простой итерации. Она определяется следующей формулой:
Также из нее можно выделить критерий окончания метода простой итерации. Он говорит, что процесс итерации необходимо продолжать до выполнения следующего неравенства:
Рассмотрим теперь на примере использование метода простой итерации.
Решить уравнение $sinx-x^2=0$ с точностью до $\varepsilon =0,001$.
Решение.
Вначале приведем уравнение к виду $x=\varphi (x)$.
Очевидно, что корень уравнения находит на отрезке $\left[\frac<\pi ><6>,\frac<\pi ><3>\right]$.
Найдем $\varphi (x)$:
Она возрастает на отрезке $\left[\frac<\pi ><6>,\frac<\pi ><3>\right]$, следовательно принимает максимальное значение, при $x=\frac<\pi ><3>$. $\left|<\varphi >‘\left(x\right)\right|\le \left|<\varphi >‘\left(\frac<\pi ><3>\right)\right|\approx 0,312$.
Условие выполняется, $q \[|x_n-x_
Это неравенство выполнится на 5 шаге.
Приведем таблицу промежуточных решений, взяв за $x_0$ единицу:
Ответ: приближенное значение с заданной точностью — $0,8765$.
Источник
Метод последовательных приближений решения дифференциального уравнения
Пусть требуется найти решение дифференциального уравнения
Будем предполагать, что в некотором прямоугольнике для уравнения (1) выполнены условия а) и б) теоремы существования и единственности решения задачи (1)-(2).
Решение задачи (1)-(2) может быть найдено методом последовательных приближений , который состоит в следующем.
Строим последовательность функций, определяемых рекуррентными соотношениями
В качестве нулевого приближения можно взять любую функцию, непрерывную в окрестности точки , в частности — начальное значение Коши (2). Можно доказать, что при сделанных предположениях относительно уравнения (1) последовательные приближения сходятся к точному решению уравнения (1), удовлетворяющему условию (2), в некотором интервале , где
Оценка погрешности, получаемой при замене точного решения n-м приближением , даётся неравенством
где . Применяя метод последовательных приближений, следует остановиться на таком , для которого не превосходит допустимой погрешности.
Пример 1. Методом последовательных приближений найти решение уравнения , удовлетворяющее начальному условию .
Решение. Очевидно, что для данного уравнения на всей плоскости выполнены условия теоремы существования и единственности решения задачи Коши. Строим последовательность функций, определяемых соотношениями (3), приняв за нулевое приближение :
Ясно, что при . Непосредственной проверкой убеждаемся, что функция решает поставленную задачу Коши.
Пример 2. Методом последовательных приближений найти приближенное решение уравнения , удовлетворяющее начальному условию в прямоугольнике
Решение. Имеем , т. е. . За берем меньшее из чисел , т. е. . Последовательные приближения согласно (4) будут сходится в интервале . Составляем их
Абсолютная погрешность третьего приближения не превосходит величины
Замечание. Функция должна удовлетворять всем условиям теоремы существования и единственности решения задачи Коши.
Следующий пример показывает, что одной непрерывности функции недостаточно для сходимости последовательных приближений.
Пусть функция определена следующим образом:
На множестве , функция непрерывна и ограничена постоянной . Для начальной точки последовательные приближения при имеют вид:
Поэтому последовательность для каждого не имеет, предела, т. е. последовательные приближения не сходятся. Заметим также, что ни одна из сходящихся подпоследовательностей и не сходится к решению, поскольку
Если же последовательные приближения сходятся, то полученное решение может оказаться неединственным , как показывает следующий пример: .
Возьмем начальное условие ; тогда
Беря в качестве нулевого приближения функцию , будем иметь
так что все последовательные приближения равны нулю и поэтому они сходятся к функции, тождественно равной нулю. С другой стороны, функция представляет собой также решение этой задачи, существующее на полупрямой .
Источник
3.2.1. Метод простых итераций (метод последовательных приближений)
Метод реализует стратегию постепенного уточнения значения корня.
Постановка задачи. Дано нелинейное уравнение (3.1). Корень отделен x* Î [a;b]. Требуется уточнить корень с точностью ε.
Уравнение ( 3.1) преобразуем к эквивалентному виду x=φ(x), (3.7)
Что можно сделать всегда и притом множеством способов.
Выберем начальное приближение x0Î [a;b].
Вычислим новые приближения:
Xi=φ(xi-1) , i=1,2,… где i − номер итерации. (3.8)
Последовательное вычисление значений xi по формуле (3.8) называется итерационным процессом метода простых итераций, а сама формула — формулой итерационного процесса метода.
Если , то итерационный процесс Сходящийся .
Условие сходимости (3.9)
Точное решение x* получить невозможно, так как требуется Бесконечный Итерационный процесс.
Можно получить Приближенное Решение, прервав итерационный (3.8) при достижении условия
, (3.10)
Где ε — заданная точность; i — номер последней итерации.
В большинстве случаев условие завершения итерационного процесса (3.10) обеспечивает близость значения xi к точному решению:
Рассмотрим геометрическую иллюстрацию метода простых итераций.
Уравнение (3.7) представим на графике в виде двух функций: y1 = x и y2= φ(x).
Возможные случаи взаимного расположения графиков функций, и соответственно, видов итерационного процесса показаны на рис. 3.7 – 3.10.
Рис. 3.7 Итерационный процесс для случая 0 1 xÎ[a, b].
Рис. 3.10 Итерационный процесс для случая £ — 1
xÎ[a, b].
Из анализа графиков следует, что скорость сходимости растет при уменьшении значения
Метод достаточно прост, обобщается на системы уравнений, устойчив к погрешности округления (она не накапливается).
При разработке алгоритма решения нелинейного уравнения методом простых итераций следует предусмотреть защиту итерационного процесса от зацикливания: использовать в качестве дополнительного условия завершения итерационного процесса превышение заданного максимального числа итераций.
Рис 3.11. Алгоритм решения нелинейного уравнения методом
простых итераций:
Основной проблемой применения метода является обеспечение сходимости итерационного процесса: нужно найти такое эквивалентное преобразование (3.1) в (3.7), чтобы обеспечивалось условие сходимости (3.9) .
Простейшие эквивалентные преобразования, например:
F(x) = 0 => x+f(x) = x, т. е. φ(x) = x + f(x)
Или выразить явно x из (3.1)
F(x) = 0 => x — φ(x) = 0 => x = φ(x)
Не гарантируют сходимость.
Рекомендуется следующий способ получения формулы Сходящегося итерационного процесса.
Пусть .
Если это не так, переписать уравнение (3.1) в виде
Умножить обе части уравнения на и к обеим частям прибавить x:
Константу l вычислить по формуле:
(3.11)
Такое значение λ гарантирует сходящийся итерационный процесс по формуле
Xi = xi+1− λ f(x) (3.12)
Где i=1,2,… — номер итерации, x0Î[a, b] – начальное приближение.
Методом простых итераций уточнить корень уравнения x3=1-2 x с точностью ε=0,001. Корень отделен ранее (см. пример 3.1), x* Î [0;1].
Сначала нужно получить формулу сходящегося итерационного процесса.
Из уравнения выразим явно x:
Проверим условия сходимости для полученной формулы:
,
,
для x Î (0;1].
Условие сходимости не соблюдается, полученная формула не позволит уточнить корень.
Воспользуемся описанным выше способом получения формулы итерационного процесса (формулы 3.11, 3.12).
,
,
для всех x Î [0;1].
Наибольшее значение принимает при x = 1, т. е.
Следовательно .
Формула Сходящегося итерационного процесса
Уточним корень с помощью данной формулы.
Выберем начальное приближение на [0;1], например x0=0,5 (середина отрезка).
Вычислим первое приближение
Проверим условие завершения итерационного процесса
Расчет следует продолжить.
X6 = 0,453917 − ответ, т. к.
Проверим полученное значение, подставив в исходное уравнение:
Значение f(x) близко к 0 с точностью, близкой к ε, следовательно, корень уточнен правильно.
Источник