Способ моментов для расчета средней величины

Вычисление средней арифметической по способу моментов

При большом числе наблюдений или при большом числовом значении вариант применяют

упрощенный способ вычисления средней арифметической- способ моментов.

где М — средняя арифметическая; А — условная средняя; i — интервал между группами вариант;

S — знак суммирования.; а- условное отклонение каждой варианты от условной средней;

р — частота встречаемости вариант; n — число наблюдений.

Пример вычисления средней арифметической по способу моментов (средней массы тела

юношей в возрасте 18 лет)

V(n в кг) Р а (V-А) а . Р
+2 +4
+1 +3
Мо=62
-1 -6
-2 -8
-3 -3
п = 25 Sар = — 10кг

Этапы расчета средней по способу моментов:

1) за условную среднюю А рекомендуется принять Моду или Медиану, например А = 62кг, так как 62 кг было у 9 юношей из 25;

2) определяем «а» — условное отклонение варианты от условной средней, для этого из каждой варианты вычитаем условную среднюю: а = V — А, ( например, а = 64 — 62 = +2 и т.д.).

3) умножаем условное отклонение «а» на частоту «р» каждой варианты и получаем произведение а р;

4) находим сумму Sа . р = — 10кг

5) рассчитываем среднюю арифметическую по способу моментов:

М = А + i SаР = 62 — 1×0,4 = 61,6кг

Таким образом, можно сделать вывод, что в изучаемой нами группе юношей средняя масса тела

Средняя арифметическая сама по себе ничего не говорит о том вариационном ряде, из которого

она была вычислена. На ее типичность (достоверность) влияет однородность рассматриваемого

материала и колеблемость ряда.

Пример: даны два одинаковых по числу наблюдений вариационных ряда, в которых

представлены данные измерений окружности головы детей в возрасте от 1 года до 2-х лет

Ряд 1 Ряд 2
Окружность головы(в см) Частота 41, 45, 46, 47, 48 7, 8, 25, 6, 2 42, 43, 44, 45, 46, 47, 48, 49, 50 1, 2, 4, 6, 14, 10, 3, 0, 2

Имея одинаковое число наблюдений и одинаковые средние арифметические (М= 46 см), ряды

Читайте также:  Урок причины конфликтов способы их разрешения

имеют различия в распределении внутри. Так варианты первого ряда отклоняются в целом от

средней арифметической с меньшим значением, чем варианты второго ряда, что дает

возможность предположить, что средняя арифметическая (46 см) более типична для первого

ряда, чем для второго.

В статистике для характеристики разнообразия вариационного ряда употребляют среднее

квадратическое отклонение (s)

Существует два способа расчета среднего квадратического отклонения: среднеарифметический

способ и способ моментов. При среднеарифметическом способе расчета применяют формулу:

где d истинное отклонение каждой варианты от истиной средней М. Формула используется при

Источник

Решения задач методом моментов

Для оценивания неизвестных параметров статистических распределений наравне с методом наибольшего правдоподобия используют метод моментов.

Суть метода: выразить числовые параметры теоретического распределения через моменты распределения, оценненные по выборки. Число моментов должно соответствовать числу неизвестных параметров распределения (чаще всего используют первые два момента). После вычисления приравниваем теоретические и выборочные моменты друг к другу и выражаем оценки параметров.

Данный метод прост в в реализации, дает неплохие оценки и удобен для отработки навыков. Про свойства оценок: состоятельность оценок выполняется при непрерывной зависимости от параметра, асимптотическая эффективность оценок, полученных по ММП всегда лучше чем у ММ, оценки по ММ чаще всего смещенные (требуется проверка).

Примеры нахождения оценок по методу моментов для разных распределений вы найдете ниже. Удачи!

Примеры решений

Пример 1. Число семян сорняков в пробах зерна подчинено закону Пуассона. Имеется выборка проб зерна. Результаты записаны в таблице Т1. Найти параметр $\lambda$ по выборке методом моментов.

Пример 2. При условии равномерного распределения случайной величины $Х$ произведена выборка
3 5 7 9 11 13 15 17 19 21
21 16 15 26 22 14 21 22 18 25
Найти оценку параметров $a$ и $b$ по методу моментов.

Пример 3. Найти методом моментов по выборке $x_1, x_2, . x_n$ точечную оценку параметра $p$ биномиального распределения $P_m(x_i)=C_^ p^ (1-p)^$, где $x_i$ — число появлений события в $i$-ом опыте ($i=1,2. n$), $m$ — количество испытаний в одном опыте.

Пример 4. Найти методом моментов по выборке $x_1, x_2, . x_n$ точечные оценки неизвестных параметров $a$ и $\sigma$ нормального распределения.

Пример 5. Пусть случайная величина $\xi$ имеет плотность $p(x)=1/(b-a)$, если $x\in(a;b)$, и $p(x)=0$, иначе. Произведена выборка. Используя метод моментов, найти $a$ и $b$.

Читайте также:  Назовите неконкурентные способы закупок

Теория по методу моментов

Хотите немного больше знать о теоретических основах метода моментов для чайников? Материалов в интернете к сожалению не так много, подойдут классические учебники по математической статистике и конечно же лекция Черновой Н. по методу моментов с теоретическими основами и примерами решений.

Источник

Расчет средней арифметической величины способом моментов

Этот способ расчета средней арифметической величины основан на использовании ее математических свойств. Среднюю арифметическую величину вычисляют по формуле

,

где момент первого порядка;

k – величина равного интервала или любое постоянное число, отличное от нуля;

А – любое постоянное число.

Момент 1-го порядка вычисляют по формуле

, где .

Пример 3. По исходным данным примера 2 вычислить средний размер премии одного работника способом моментов.

Решение. Пусть А = 6 000 и k = 500. Расчеты представлены в таблице:

6000
3 000–5 000 4 000 – 2 000 – 4 – 16
5 000– 7000 6 000
7 000–10 000 8 500 2 500
10 000–15 000 12 500 6 500
Итого

Вычислим момент первого порядка

= = 3,4.

Средний размер заработной платы одного работника составил

= = 7 700 (руб. / мес.).

Источник

Определение средней арифметической по способу моментов. Свойства средней арифметической

Где А – условный нуль, равный варианте с максимальной частотой (середина интервала с максимальной частотой), h – шаг интервала,

Назначение сервиса . С помощью онлайн-калькулятора вычисляется среднее значение по способу моментов. Результат решения оформляется в формате Word .

Инструкция . Для получения решения необходимо заполнить исходные данные и выбрать параметры отчета для оформления в Word.

Алгоритм нахождения средней по способу моментов

Пример . Затраты рабочего времени на однородную технологическую операцию распределялись между рабочими следующим образом:

Требуется определить среднюю величину затрат рабочего времени и среднеквадратическое отклонение по способу моментов; коэффициент вариации; моду и медиану.
Таблица для расчета показателей.

Группы Середина интервала, x i Кол-во, f i x i ·f i Накопленная частота, S (x-x ) 2 ·f
5 — 10 7.5 20 150 20 4600.56
15 — 20 17.5 25 437.5 45 667.36
20 — 25 22.5 50 1125 95 1.39
25 — 30 27.5 30 825 125 700.83
30 — 35 32.5 15 487.5 140 1450.42
35 — 40 37.5 10 375 150 2200.28
150 3400 9620.83

Мода

где x 0 – начало модального интервала; h – величина интервала; f 2 –частота, соответствующая модальному интервалу; f 1 – предмодальная частота; f 3 – послемодальная частота.
Выбираем в качестве начала интервала 20, так как именно на этот интервал приходится наибольшее количество.

Читайте также:  Внедоговорные способы перехода исключительных прав

Наиболее часто встречающееся значение ряда – 22.78 мин.
Медиана
Медианным является интервал 20 — 25, т.к. в этом интервале накопленная частота S, больше медианного номера (медианным называется первый интервал, накопленная частота S которого превышает половину общей суммы частот).

Таким образом, 50% единиц совокупности будут меньше по величине 23 мин.
.

Находим А = 22.5, шаг интервала h = 5.
Средний квадрат отклонений по способу моментов .

x ц x * i x * i f i 2 f i
7.5 -3 -60 180
17.5 -1 -25 25
22.5 0 0 0
27.5 1 30 30
32.5 2 30 60
37.5 3 30 90
5 385

мин.

Среднее квадратическое отклонение .
мин.
Коэффициент вариации — мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>30% ,но v . С помощью онлайн-калькулятора вычисляется среднее значение по способу моментов. Результат решения оформляется в формате Word .

Инструкция . Для получения решения необходимо заполнить исходные данные и выбрать параметры отчета для оформления в Word.

Алгоритм нахождения средней по способу моментов

Пример . Затраты рабочего времени на однородную технологическую операцию распределялись между рабочими следующим образом:

Требуется определить среднюю величину затрат рабочего времени и среднеквадратическое отклонение по способу моментов; коэффициент вариации; моду и медиану.
Таблица для расчета показателей.

Группы Середина интервала, x i Кол-во, f i x i ·f i Накопленная частота, S (x-x ) 2 ·f
5 — 10 7.5 20 150 20 4600.56
15 — 20 17.5 25 437.5 45 667.36
20 — 25 22.5 50 1125 95 1.39
25 — 30 27.5 30 825 125 700.83
30 — 35 32.5 15 487.5 140 1450.42
35 — 40 37.5 10 375 150 2200.28
150 3400 9620.83

Мода

где x 0 – начало модального интервала; h – величина интервала; f 2 –частота, соответствующая модальному интервалу; f 1 – предмодальная частота; f 3 – послемодальная частота.
Выбираем в качестве начала интервала 20, так как именно на этот интервал приходится наибольшее количество.

Наиболее часто встречающееся значение ряда – 22.78 мин.
Медиана
Медианным является интервал 20 — 25, т.к. в этом интервале накопленная частота S, больше медианного номера (медианным называется первый интервал, накопленная частота S которого превышает половину общей суммы частот).

Таким образом, 50% единиц совокупности будут меньше по величине 23 мин.
.

Источник

Оцените статью
Разные способы